

UVR16x2 FREI PROGRAMMIERBARER UNIVERSALREGLER

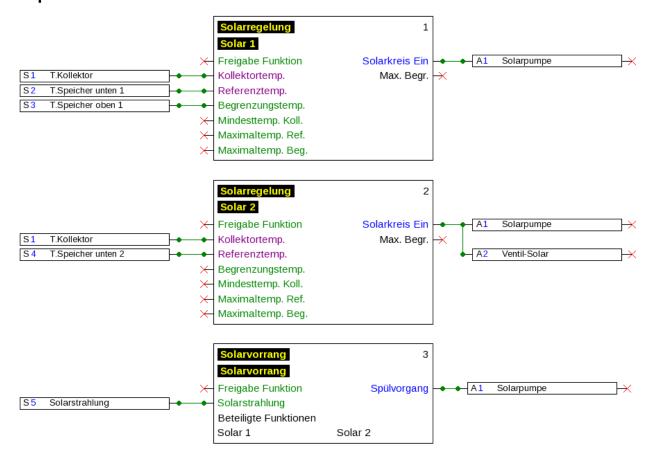
Programmierung: Allgemeine Hinweise

Inhaltsverzeichnis

Grundlagen	
Planungsgrundlagen	6
Bezeichnungen	
Allgemeine Hinweise zur Parametrierung	8
Datum / Uhrzeit / Standort	9
Gangreserve	10
Werteübersicht	. 11
Eingänge	
Parametrierung	
Sensortyp und Messgröße	
Bezeichnung	
Sensorkorrektur	
Mittelwert	
Sensorcheck für analoge Sensoren	
Sensorfehler	16
Zuordnung der möglichen Sensortypen zu den Eingängen	
Widerstandstabelle der verschiedenen Fühlertypen	18
Ausgänge	. 19
Parametrierung	
Ausgangstyp	
Bezeichnung	
Übersicht Ausgänge	
Ausgangszähler	
Anzeige der Verknüpfungen	
Blockierschutz	
Displayanzeige	
Fixwerte	
Parametrierung	
Fixwerttyp	
Digital	
Analog	
Impuls	
Funktionsgröße	
Einschränkung der Veränderbarkeit	
Meldungen	
•	
CAN-Bus	
Datenlogging	
Datenlogging Einstellungen	
Datenlogging Analog / Digital	
CAN-Einstellungen	
Knotennummer	
Bezeichnung	
CAN-Bus Timeout	
Sensorcheck	
Messgröße	
Wert bei Timeout	41
Sensorkorrektur	41
Sensorfehler	
CAN-Digitaleingänge	
CAN-Analogausgänge	
Bezeichnung und Sendebedingung	
Sendebedingung	43

Inhaltsverzeichnis

CAN-Digitalausgange	
Bezeichnung und Sendebedingungen	
Aktive CAN-Knoten	
DL-Bus	46
DL-Einstellungen	46
DL-Eingang	47
DL-Bus Adresse und DL-Bus Index	47
Bezeichnung	
DL-Bus Timeout	48
Sensorcheck	48
Messgröße	48
Wert bei Timeout	48
Sensorkorrektur	49
Sensorfehler	49
DL-Digitaleingänge	49
Buslast von DL-Sensoren	49
DL-Ausgang	
Bezeichnung und Zieladresse	51
Grundeinstellungen	52
Sprache	52
Helligkeit	
Display Timeout	
Simulation	
Währung	
Zugang Menü	
Benutzerdefinierte Bezeichnungen	
Benutzer	
Aktueller Benutzer	
Passwort ändern	
Version und Seriennummer	
Datenverwaltung	58
Funktionsdaten	
Laden	
Löschen, Umbenennen und Versenden von gespeicherten Dateien	
Datei löschen	
Datei umbenennen	
Datei an ausgewählten Knoten senden	
Speichern	
Firmware Laden	
Funktionsübersicht Laden/Löschen	
Status	
Totalreset	
Neustart	
Reset	
Laden der Firmware des Auslieferungszustands	
Kalibrierung	
Change-Log	
Systemwerte	66
Funktionsübersicht	68
LED-Kontrolllampe	
Technische Daten UVR16x2-R (Relaisversion)	
· · · · · · · · · · · · · · · · · · ·	
Technische Daten UVR16x2-D (Triacversion)	71


Grundlagen

Diese Anleitung dient als Programmierhilfe direkt am Gerät, gibt aber auch wichtige Erläuterungen zu den Elementen, die für die Programmierung mit der Programmiersoftware TAPPS 2 benötigt werden (Funktionen, Ein- und Ausgänge, etc.).

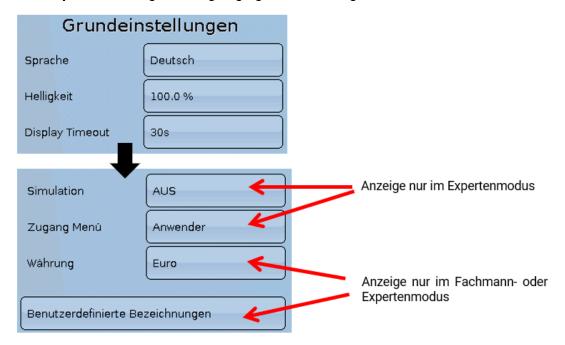
Grundsätzlich ist die Programmierung mit TAPPS 2 zu empfehlen. Dadurch kann der Programmierer die gesamte Funktionalität am PC als grafischen Ablaufplan zeichnen (= programmieren) und parametrieren.

Trotzdem ist es wichtig, auch die "Programmier- Mechanismen" am Gerät selbst zu kennen um vor Ort Änderungen vornehmen zu können.

Beispiel mit TAPPS2:

Planungsgrundlagen

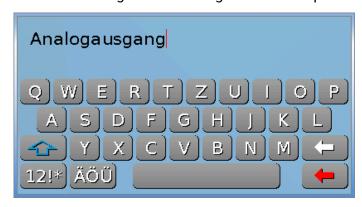
Um eine effiziente Programmerstellung zu gewährleisten, muss eine festgelegte Reihenfolge eingehalten werden:


1	Grundvoraussetzung zur Erstellung der Programmierung und der Parametrierung ist ein exaktes hydraulisches Schema.							
2	Anhand dieses Schemas muss festgelegt werden, was wie geregelt werden soll.							
3	Aufgrund der gewünschten Regelfunktionen sind die Sensorpositionen zu bestimmen und im Schema einzuzeichnen.							
4	Im nächsten Schritt werden alle Sensoren und Ausgänge mit den gewünschten Ein- und Ausgangsnummern versehen. Da die Sensoreingänge und Ausgänge unterschiedliche Eigenschaften besitzen, ist eine einfache Durchnummerierung nicht möglich. Die Ein- und Ausgangsbelegung muss daher an Hand dieser Anleitung erfolgen.							
5	Danach erfolgen der Aufruf der Funktionen und deren Parametrierung.							

Bezeichnungen

Zur Bezeichnung aller Elemente können vorgegebene Bezeichnungen aus verschiedenen Bezeichnungsgruppen oder benutzerdefinierte Bezeichnungen ausgewählt werden.

Zusätzlich kann jeder Bezeichnung eine Zahl 1 – 16 zugeordnet werden.

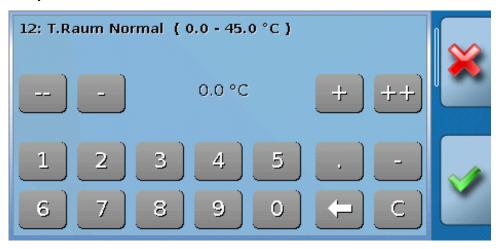

Im Menü "Grundeinstellungen" können alle benutzerdefinierten Bezeichnungen aus der Fachmannoder Expertenebene global angelegt, geändert oder gelöscht werden.

Ansicht mit bereits definierten Bezeichnungen

Für die Änderung oder Neuanlage steht eine alphanumerische Tastatur zur Verfügung.

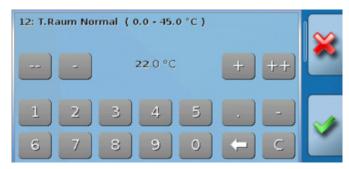
Es können **bis zu 100 verschiedene** Bezeichnungen vom Benutzer definiert werden. Die maximale Zeichenanzahl pro Bezeichnung ist **24**

Die bereits definierten Bezeichnungen stehen allen Elementen (Eingänge, Ausgänge, Funktionen, Fixwerte, Bus-Ein- und Ausgänge) zur Verfügung.


Allgemeine Hinweise zur Parametrierung

von Eingängen, Ausgängen, Fixwerten, Funktionen, Grundeinstellungen und CAN- und DL-Ein- und Ausgängen.

Jede Eingabe muss mit Anwählen von Meendet werden.


Sollen die Eingaben verworfen werden, wird **a** gewählt.

Beispiel:

Eingabe von Zahlenwerten

Zur Eingabe von Zahlenwerten wird ein Tastaturfeld angezeigt.

Es wird der aktuelle Wert vorgegeben (Beispiel: 20,0°C).

In der oberen Zeile wird der Eingabebereich angezeigt (Beispiel: 0,0 – 45,0°C).

Die Eingabe kann entweder durch die Korrekturflächen (--, -, +, ++) oder durch die Zahlenflächen erfolgen. Die Korrekturflächen "-" und "+" ändern den Wert der 1. Stelle, die Flächen "--" und "++"den Wert der 2. Stelle (Faktor 10).

Die Pfeilfläche kürzt den Wert um eine Stelle, die Fläche setzt den Wert auf null. Abschluss der Eingabe mit ✓, Verwerfen mit 🔌.

Aus den Untermenüs gelangt man mit der Schaltfläche 📳 in das Hauptmenü.

Datum / Uhrzeit / Standort

In der Statuszeile werden rechts oben Datum und Uhrzeit angezeigt.

Durch Anwahl dieses Statusfeldes gelangt man in das Menü für Datum, Uhrzeit und Standortangaben.

Zuerst werden die Parameter für die Systemwerte angezeigt.

- Zeitzone 01:00 bedeutet die Zeitzone "UTC + 1 Stunde". UTC steht für "Universal Time Coordinated", auch als GMT (= Greenwich Mean Time) bezeichnet.
- **automatische Zeitumstellung** Wenn "Ja", erfolgt die automatische Sommerzeitumstellung nach den Vorgaben der Europäischen Union.
- **Sommerzeit** "Ja", wenn die Sommerzeit aktiv ist. Nur änderbar, wenn die "automatische Zeitumstellung" auf "Nein" steht.
- Datum Eingabe des aktuellen Datums (TT.MM.JJ).
- · Uhrzeit Eingabe der aktuellen Uhrzeit
- **GPS Breite** Geographische Breite nach GPS (= global positioning system satellitengestütztes Navigationssystem),
- GPS Länge Geographische Länge nach GPS

Mit den Werten für die geographische Länge und Breite werden die standortbezogenen Sonnendaten ermittelt. Diese können in Funktionen (z.B. Beschattungsfunktion) verwendet werden.

Die werksseitige Voreinstellung für die GPS-Daten bezieht sich auf den Standort der Technischen Alternative in Amaliendorf / Österreich.

Nachfolgend werden die standortbezogenen Sonnendaten angezeigt.

Beispiel:

Sonnenaufgang	05:07
Sonnenhöchststand	13:04
Sonnenuntergang	21:02
Sonnenhöhe	60.0°
Sonnenrichtung	212.8°

Sonnenaufgang - UhrzeitSonnenuntergang - Uhrzeit

• Sonnenhöhe – Angabe in ° vom geometrischen Horizont (0°) aus gemessen,

Zenit = 90°

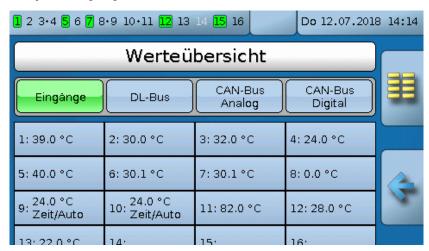
• Sonnenrichtung – Angabe in ° von Norden (0°) aus gemessen

Nord = 0° Ost = 90° Süd = 180° West = 270°

Gangreserve

Der Regler hat bei Stromausfall eine Gangreserve von ca. 3 Tagen für Uhrzeit und Datum.

Werteübersicht


In diesem Menü werden die aktuellen Werte der **Eingänge** 1 – 16, der **DL- Eingänge** und der analogen und digitalen **CAN-Eingänge** angezeigt.

Die verschiedenen Werte werden durch Antippen der gewünschten Gruppe sichtbar.

Beispiel: Eingänge

Eingänge

Der Regler besitzt 16 Eingänge für analoge (Messwerte), digitale (EIN/AUS) Signale oder Impulse.

Nach Anwahl im Hauptmenü werden die Eingänge mit ihrer Bezeichnung und dem aktuellen Messwert bzw. Zustand angezeigt.

Beispiel einer bereits programmierten Anlage, Eingang 1 ist noch unbenutzt:

Parametrierung

Sensortyp und Messgröße

Nach Auswahl des gewünschten Eingangs erfolgt die Festlegung des Sensortyps.

Zuerst erfolgt die grundsätzliche Abfrage für den Typ des Eingangssignals

- Digital
- Analog
- Impuls

Digital

Auswahl der Messgröße:

- Aus / Ein
 Aus / Ein (invers)
- Nein / Ja Nein / Ja (invers)

Analog

Auswahl der Messgröße:

- Temperatur
- Auswahl des Sensortyps: KTY ($2 k\Omega/25^{\circ}C$ = ehemalige Standardtype der Technischen Alternative), PT 1000 (= aktuelle Standardtype), Raumsensoren: RAS, RASPT, Thermoelement THEL, KTY ($1 k\Omega/25^{\circ}C$), PT 100, PT 500, Ni1000, Ni1000 TK5000
- Solarstrahlung (Sensortyp: GBS01)
- Spannung (Eingänge 1-6 und 9-16: max. 3,3 V, Eingänge 7 und 8: max. 10V)
- Strom (nur Eingang 8: 4-20mA DC)
- Widerstand
- Feuchte (Sensortyp: RFS)
- Regen (Sensortyp: RES)

Zusätzliche Auswahl der Prozessgröße

für die Messgrößen Spannung, Strom (nur Eingang 8), Widerstand:

- dimensionslos
- dimensionslos (,1)
- Arbeitszahl
- dimensionslos (,5)
- Temperatur °C
- Globalstrahlung
- CO₂-Gehalt ppm
- Prozent

- · Absolute Feuchte
- Druck bar, mbar, Pascal
- Liter
- Kubikmeter
- Durchfluss (I/min, I/h, I/d, m³/min, m³/h, m³/d)
- Leistung
- Spannung

- Stromstärke mA
- Stromstärke A
- Widerstand
- Frequenz
- Geschwindigkeit km/h
- Geschwindigkeit m/s
- Grad (Winkel)

Anschließend muss der Wertebereich mit der Skalierung festgelegt werden. **Beispiel** Spannung/Globalstrahlung

Eingangswert 1

Zielwert 1

Eingangswert 2

Zielwert 2

1500 W/m²

0,00V entsprechen 0 W/m², 10,00V ergeben 1500 W/m².

Impulseingang

Die Eingänge **15 und 16** können Impulse mit **max. 20 Hz** und mindestens **25 ms** Impulsdauer erfassen (**S0**-Impulse).

Die Eingänge 1 - 14 können Impulse mit max. 10 Hz und mindestens 50 ms Impulsdauer erfassen.

Auswahl der Messgröße

Windgeschwindigkeit

Für die Messgröße "Windgeschwindigkeit" muss ein Quotient eingegeben werden. Das ist die Signalfrequenz bei 1 km/h.

Beispiel: Der Windsensor **WIS01** gibt bei einer Windgeschwindigkeit von 20 km/h jede Sekunde einen Impuls aus (= 1Hz). Daher ist die Frequenz bei 1 km/h gleich 0,05Hz.

Einstellbereich: 0,01 - 1,00 Hz

Durchfluss

Für die Messgröße "**Durchfluss**" muss ein Quotient eingegeben werden. Das ist die Durchflussmenge in Liter pro Impuls.


Einstellbereich: 0,1 - 100,0 l/Impuls

Impuls

Diese Messgröße dient als Eingangsvariable für die Funktion "Zähler", Impulszähler mit Einheit "Impulse".

Benutzerdefiniert

Für die Messgröße "Benutzerdefiniert" müssen ein Quotient und die Einheit eingegeben werden.

Einstellbereich Quotient: 0,00001 – 1000,00000 Einheiten/Impuls (5 Nachkommastellen)

Einheiten: I, kW, km, m, mm, m³.

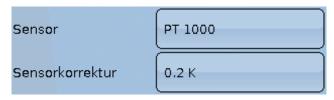
Für I, mm und m³ muss zusätzlich die Zeiteinheit ausgewählt werden. Für km und m sind die Zeiteinheiten fix vorgegeben.

Beispiel: Für die Funktion "Energiezähler" kann die Einheit "kW" verwendet werden. Im obigen Beispiel wurde 0,00125 kWh/Impuls gewählt, das entspricht 800 Impulse /kWh.

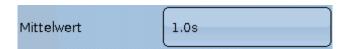
Bezeichnung

Eingabe der Eingangsbezeichnung durch Auswahl vorgegebener Bezeichnungen aus verschiedenen Bezeichnungsgruppen oder benutzerdefinierter Bezeichnungen.

Sensortyp Analog / Temperatur:


- Allgemein
- Erzeuger
- Verbraucher
- Leitung
- Klima
- Benutzer (benutzerdefinierter Bezeichnungen)

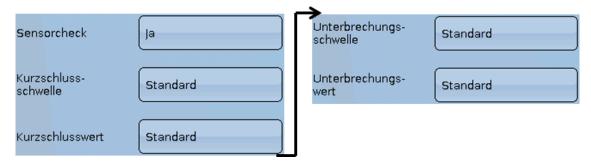
Zusätzlich kann jeder Bezeichnung eine Zahl 1 – 16 zugeordnet werden.


Sensorkorrektur

Für die Messgrößen Temperatur, Solarstrahlung, Feuchte und Regen des Sensortyps Analog besteht die Möglichkeit einer Sensorkorrektur. Der korrigierte Wert wird für alle Berechnungen und Anzeigen verwendet.

Beispiel: Temperatursensor PT1000

Mittelwert


Diese Einstellung betrifft die **zeitliche** Mittelung der Messwerte.

Eine Mittelwertbildung von 0,3 Sekunden führt zu einer sehr raschen Reaktion der Anzeige und des Gerätes, allerdings muss mit Schwankungen des Wertes gerechnet werden.

Ein hoher Mittelwert führt zu Trägheit und ist nur für Sensoren des Wärmemengenzählers empfehlenswert.

Bei einfachen Messaufgaben sollte etwa 1 - 3 Sekunden gewählt werden, bei der hygienischen Warmwasserbereitung mit dem ultraschnellen Sensor 0,3 – 0,5 Sekunden.

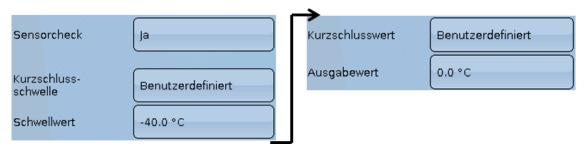
Sensorcheck für analoge Sensoren

Ein aktiver "Sensorcheck" (Eingabe: "Ja") erzeugt bei einem Kurzschluss bzw. einer Unterbrechung automatisch eine Fehlermeldung: In der oberen Statusleiste wird ein Warndreieck angezeigt, im Menü "Eingänge" erhält der defekte Sensor einen roten Rahmen.

Beispiel:

Sensorfehler

Bei aktivem "Sensorcheck" steht der Sensorfehler als Eingangsvariable von Funktionen zur Verfügung: Status "Nein" für einen korrekt arbeitenden Sensor und "Ja" für einen Defekt (Kurzschluss oder Unterbrechung). Damit kann z.B. auf den Ausfall eines Sensors reagiert werden.


In den Systemwerten / Allgemein steht der Sensorfehler aller Eingänge zur Verfügung.

Werden die **Standard**-Schwellen gewählt, dann wird ein Kurzschluss bei Unterschreiten der unteren **Messgrenze** und eine Unterbrechung bei Überschreiten der oberen **Messgrenze** angezeigt.

Die **Standard**-Werte für Temperatursensoren sind bei Kurzschluss -9999,9°C und bei Unterbrechung 9999,9°C. Diese Werte werden im Fehlerfall für die internen Berechnungen herangezogen.

Durch passende Auswahl der Schwellen und Werte kann bei Ausfall eines Sensors dem Regler ein fester Wert vorgegeben werden, damit eine Funktion im Notbetrieb weiterarbeiten kann.

Beispiel: Wird die Schwelle von -40°C (= "Schwellwert") unterschritten, wird ein Wert von 0,0°C (= "Ausgabewert") für diesen Sensor angezeigt und ausgegeben (fixe Hysterese: 1,0°C). Gleichzeitig wird der Status "Sensorfehler" auf "**Ja**" gesetzt.

Beispiel: Der Sensor 1 hat -40°C unterschritten, als Messwert wird daher 0°C ausgegeben, gleichzeitig wird ein Sensorfehler angezeigt.

1: T.Außen 0.0 °C

Zuordnung der möglichen Sensortypen zu den Eingängen

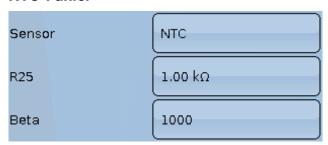
	PT1000, KTY (2kΩ), KTY (1kΩ), PT100, PT500, Ni1000, Ni1000TK5000, NTC	Digital (EIN/AUS)	THEL, GBS01, RFS, RES01	Spannung 0 – 3,3 V DC	Spannung 0 - 10V DC	Strom 4 – 20 mA	Widerstand 1 - 100 kOhm	Impulse max 10 Hz	Impulse (S0) max. 20 Hz
Eingänge 1 - 6	x	x	х	х			х	х	
Eingang 7	х	х	х	х	х		х	х	
Eingang 8	х	X	х	х	х	Х	Х	х	
Eingänge 9 - 14	x	x	х	x			x	х	
Eingang 15	х	X	х	x			х	х	х
Eingang 16	х	Х	х	х			х	х	х

Bei der **Spannungsmessung** der Eingänge 1-6 und 9-16 (max. 3,3V) ist zu beachten, dass der Innenwiderstand der **Spannungsquelle** 100 Ohm nicht überschreiten darf, um die Genauigkeit It. technischen Daten nicht zu unterschreiten.

Spannungsmessung Eingänge 7 und 8: Die Eingangsimpedanz des Reglers beträgt 30kOhm. Es ist darauf zu achten, dass die Spannung nie über 10,5V steigt, da sonst die anderen Eingänge extrem negativ beeinflusst werden.

Widerstandsmessung: Bei Einstellung Prozessgröße "dimensionslos" ist die Messung nur bis 30kOhm möglich. Bei Einstellung Prozessgröße "Widerstand" und Messung von Widerständen >15kOhm sollte die Mittelwertzeit erhöht werden, da die Werte leicht schwanken.

Widerstandstabelle der verschiedenen Fühlertypen


Temp.		0	10	20	25	30	40	50	60	70	80	90	100
PT1000	[Ω]	1000	1039	1078	1097	1117	1115	1194	1232	1271	1309	1347	1385
KTY (2kΩ)	[Ω]	1630	1772	1922	2000	2080	2245	2417	2597	2785	2980	3182	3392
KTY (1kΩ)	[Ω]	815	886	961	1000	1040	1122	1209	1299	1392	1490	1591	1696
PT100	[Ω]	100	104	108	110	112	116	119	123	127	131	135	139
PT500	[Ω]	500	520	539	549	558	578	597	616	635	654	674	693
Ni1000	[Ω]	1000	1056	1112	1141	1171	1230	1291	1353	1417	1483	1549	1618
Ni1000 TK5000	[Ω]	1000	1045	1091	1114	1138	1186	1235	1285	1337	1390	1444	1500

Die Standardtype der Technischen Alternative ist **PT1000**.

Bis 2010/2011 war die Standardtype der Werksauslieferung KTY ($2k\Omega$).

PT100, **PT500**: Da diese Sensoren gegenüber äußeren Störungseinflüssen anfälliger sind, müssen die Sensorleitungen **geschirmt** sein und sollte die **Mittelwertszeit** erhöht werden. Trotzdem kann die für PT1000-Sensoren geltende Genauigkeit lt. technischen Daten **nicht garantiert** werden.

NTC-Fühler

Für die Auswertung von NTC-Fühlern ist die Angabe des R25- und des Beta-Wertes erforderlich.

Der Nennwiderstand R25 bezieht sich immer auf 25°C.

Der Beta-Wert bezeichnet die Charakteristik eines NTC-Fühlers in Bezug auf 2 Widerstandswerte.

Beta ist eine Materialkonstante und kann aus der Widerstandstabelle des Herstellers mit folgender Formel berechnet werden:

$$B = \frac{\ln \frac{R1_{(NT)}}{R2_{(HT)}}}{\frac{1}{T1_{(NT)}} - \frac{1}{T2_{(HT)}}}$$

Da der Beta-Wert keine Konstante über den gesamten Temperaturverlauf ist, müssen die zu erwartenden Grenzen des Messbereichs festgelegt werden (z.B. für einen Speicherfühler von +10°C bis +100°C, oder für einen Außenfühler von -20°C bis +40°C).

Alle Temperaturen in der Formel müssen als **absolute Temperaturen in K** (Kelvin) angegeben werden $(z.B. +20^{\circ}C = 273,15 \text{ K} + 20 \text{ K} = 293,15 \text{ K})$

In natürlicher Logarithmus

R1_(NT) Widerstand bei der unteren Temperatur des Temperaturbereichs R2_(HT) Widerstand bei der oberen Temperatur des Temperaturbereichs

 $T1_{(NT)}$ untere Temperatur des Temperaturbereichs $T2_{(HAT)}$ obere Temperatur des Temperaturbereichs

Ausgänge

Der Regler besitzt 16 Ausgänge.

Durch Antippen der Ausgangsanzeige in der oberen Statuszeile gelangt man ebenfalls in das Menü "Ausgänge". Nicht definierte Ausgänge sind ausgeblendet.

Nach der Anwahl werden die Ausgänge mit ihrer Bezeichnung und dem aktuellen Zustand angezeigt (siehe Kapitel "Displayanzeige").

Beispiel:

Parametrierung 😵

Nach Auswahl des gewünschten Ausgangs erfolgt die Festlegung des Ausgangstyps.

Zuerst erfolgt die grundsätzliche Abfrage für den Ausgangstyp.

Ausgangstyp

Man unterscheidet folgende verschiedene Ausgangstypen, die aber nicht bei allen Ausgängen wählbar sind:

- Schaltausgang
- Ausgangspaar
- 0-10V
- PWM

Ausgänge 1/2, 3/4, 6/7, 8/9, 10/11, 12/13 und 14/15 als Ausgangspaar

Diese Ausgänge können als einfache Schaltausgänge oder zusammen mit dem **nachfolgenden** Schaltausgang als **Ausgangspaar** (z.B. Ansteuerung eines Mischerantriebs) verwendet werden.

Achtung!

Die Ausgangspaare 1/2 und 6/7 dürfen nur in der Relaisversion der UVR16x2 verwendet werden.

Die Ausgangspaare 1/2, 3/4, 6/7, 8/9 und 10/11 stehen serienmäßig zur Verfügung. Die Ausgangspaare 12/13 und 14/15 benötigen den Einsatz von Hilfsrelais (Relaismodulen).

Laufzeit

Für jedes **Ausgangspaar** muss die Mischer-Laufzeit eingegeben werden.

Wird Mischerlaufzeit 0 eingegeben, erfolgt keine Ansteuerung des Ausgangspaars.

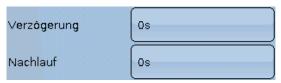
Laufzeitbegrenzung

Bei **aktiver** Laufzeitbegrenzung wird die Ansteuerung des Ausgangspaars beendet, wenn die Restlaufzeit von 20 Minuten auf 0 heruntergezählt ist. Die Restlaufzeit wird neu geladen, wenn das Ausgangspaar in den Hand-

betrieb umgestellt, von einer Meldung (dominant EIN oder AUS) angesteuert wird, sich die Ansteuerungsrichtung ändert oder die Freigabe von AUS auf EIN umgeschaltet wird.

Wird die Laufzeitbegrenzung **deaktiviert**, dann wird die Restlaufzeit nur bis 10 Sekunden heruntergezählt und die Ansteuerung des Ausgangspaares wird nicht beendet.

Ausgangspaare werden in der Statuszeile mit einem "+" zwischen den Ausgangsnummern angezeigt.


Beispiel: Ausgänge 8+9 und 10+11 sind als Ausgangspaare parametriert

Wirken 2 verschiedene Funktionen gleichzeitig auf beide Ausgänge des Ausgangspaars, so wird der Ausgang mit der niedrigeren Nummer ("AUF"-Befehl) aktiviert.

Ausnahme: Funktion "**Meldung**" – kommt der gleichzeitige Befehl von dieser Funktion, so wird der Ausgang mit der höheren Nummer ("ZU"-Befehl) aktiviert.

Alle Schaltausgänge

Für alle **Schalt**ausgänge kann eine Einschaltverzögerung und eine Nachlaufzeit festgelegt werden.

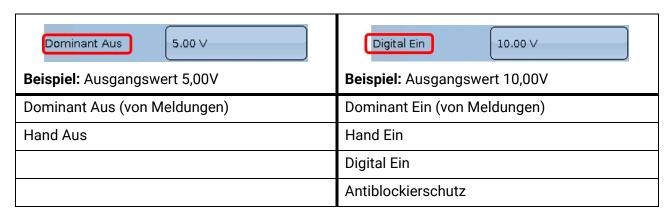
Alle Ausgänge

Für alle Ausgänge kann der Handbetrieb auf **Benutzergruppe** (Anwender, Fachmann, Experte) eingeschränkt werden.

Ausgänge 12 bis 16 als Analogausgänge

Diese Ausgänge stellen eine Spannung von 0 bis 10V zur Verfügung, z.B. zur Leistungsregelung von Brennern (Brennermodulation) oder Drehzahlregelung von Elektronikpumpen.

Die Ausgabe erfolgt wahlweise als Spannung (0 - 10 V) oder als PWM-Signal.

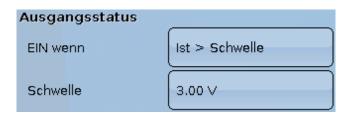

Sie können von der PID-Funktion oder auch von anderen Funktionen angesteuert werden. Die "Skalierung" bietet die Möglichkeit, den Analogwert der Quelle (mit oder ohne Nachkommastelle) dem Regelbereich des zu regelnden Gerätes anzupassen.

Im Modus **PWM** (Pulsweitenmodulation) wird ein Rechtecksignal mit einem Spannungspegel von ca. **10V** und einer Frequenz von **1kHz** mit variablem Tastverhältnis (0 - 100%) erzeugt.

Wirken mehrere Funktionen (Analogwerte) gleichzeitig auf einen Analogausgang, wird der höhere Wert ausgegeben.

Bei Aktivierung des Analogausgangs über einen **Digitalbefehl** kann eine Ausgangsspannung zwischen 0,00V und 10,00V (bzw. 0,0% – 100,0% bei PWM) festgelegt werden. Digitalbefehle sind gegenüber einer Verknüpfung mit einem Analogwert **dominant**.

Die Aktivierung des Analogausgangs über "**Dominant Aus**" und "**Digital Ein**" ist durch folgende digitale Signale möglich:



Ausgangsstatus der Analogausgänge

Für den **Ausgangsstatus** kann festgelegt werden, ob der Status **EIN** oberhalb oder unterhalb einer einstellbaren **Schwelle** ausgegeben werden soll.

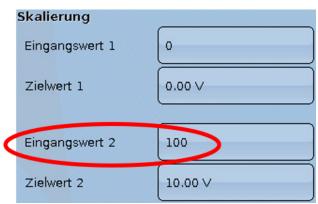
Beispiel: Wenn der Analogausgang über 3,00 V ausgibt, dann geht der Ausgangsstatus von AUS auf EIN.

Je nach technischen Eigenschaften der angesteuerten Pumpe kann somit der Ausgangsstatus so eingestellt werden, dass dieser nur dann auf EIN steht, wenn die Pumpe tatsächlich läuft.

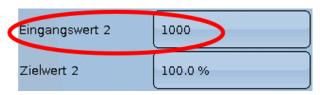
Soll mit einem Analogausgang (A12 – A16) **zugleich** auch ein Schaltausgang mitgeschaltet werden, kann dies nur durch geeignet Programmierung erreicht werden.

Beispiel: Sobald der Ausgangsstatus des Analogausganges auf EIN geht, wird dieser EIN-Befehl über die Logikfunktion an den Schaltausgang weitergegeben.

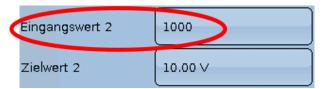
Anzeige im Menü Ausgänge


In der Menüanzeige wird der Betriebszustand des Analogausgangs angezeigt. Der Ausgangsstatus kann durch Antippen geändert werden.

- •Auto: Ausgabe entsprechend der Quelle und Skalierung
- ·Hand: einstellbarer Wert
- Hand/AUS: Ausgabe It. Einstellung "Dominant Aus"
- •Hand/EIN: Ausgabe lt. Einstellung "Digital Ein"


Beispiele verschiedener Skalierungen

Stellgröße von PID-Funktion: Modus 0-10V, die Stellgröße 0 soll 0V, die Stellgröße 100 soll 10V entsprechen:


Temperaturwert, z.B. von einer Analogfunktion: Modus PWM, die Temperatur 0°C soll 0%, die Temperatur 100,0°C soll 100% entsprechen:

Die Temperatur wird in 1/10°C **ohne Komma** übernommen.

Brennerleistung, z.B. von den Funktionen Warmwasseranforderung oder Wartung: Modus 0-10V, die Brennerleistung von 0,0% soll 0V, 100,0% sollen 10V entsprechen:

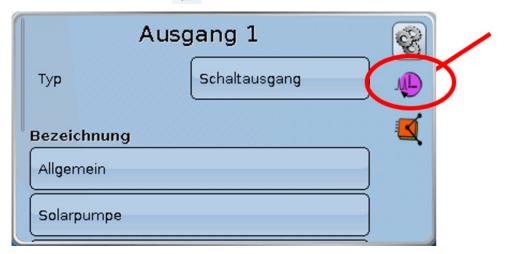
Der Prozentwert wird in 1/10% ohne Komma übernommen.

Bezeichnung

Eingabe der Ausgangsbezeichnung durch Auswahl vorgegebener Bezeichnungen aus verschiedenen Bezeichnungsgruppen oder benutzerdefinierter Bezeichnungen.

- Allgemein
- Klima
- Benutzer (benutzerdefinierter Bezeichnungen)

Zusätzlich kann jeder Bezeichnung eine Zahl von 1 bis 16 zugeordnet werden.


Übersicht Ausgänge

	Schaltausgang Relais Schließer	Schaltausgang Relais Schließer + Öffner	Schaltausgang Relais potentialfrei Schließer + Öffner	Ausgangspaar für Mischer, etc.	0-10V oder PWM
Ausgang 1	x ¹			х	
2	x ¹			х	
3	x			х	
4		x		x	
5			x		
6	x ¹			х	
7	x ¹			x	
8	X			х	
9	X			х	
10	X			х	
11		x		х	
12			x ²	x ²	x
13			x ²	x ²	х
14			x ²	x ²	х
15			x ²	x ²	х
16			x ²		х

¹ Triac-Ausgänge bei Triac-Version (UVR16x2-D)

² Schaltausgänge und Ausgangspaare 12 – 16 nur mit Zusatzplatinen möglich

Ausgangszähler 🔑

Durch Anwahl des Symbols können **für jeden Ausgang** die Betriebsstunden und Impulse (Einschaltungen) abgelesen werden.

Beispiel: Beim Ausgang 1 kann der Zählerstand seit dem 12.07.2018 abgelesen werden.

Nach Tippen auf das Schaltfeld wird abgefragt, ob man die **gesamten** Zählerstände und "**Vortag**" des Betriebsstunden- **und** des Impulszählers löschen möchte. Die Zählerstände "**heute**" und "**letzter Lauf**" und "**aktueller Lauf**" werden damit nicht gelöscht.

Diese Frage wird entweder mit Antippen des Häkchens (= Ja) oder des Kreuzes (= Nein) beantwortet.

Nach dem Löschen wird das aktuelle Tagesdatum angezeigt.

Betriebsstunden				
Betriebsstunden	3h 20m 37s			
Betriebsstunden Vortag	0s			
Betriebsstunden heute	2h 10m 25s			
Betriebsstunden letzter Lauf	1h 51m 16s			
Betriebsstunden aktueller Lauf	20m 07s			
Betriebsstunden heute löschen				

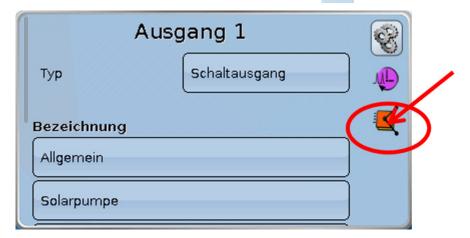
Es werden die Gesamtbetriebsstunden, die Betriebsstunden des Vortags und von heute, sowie des letzten und des aktuellen Laufs angezeigt.

Nach Tippen auf das Schaltfeld wird abgefragt, ob man die **heute** gezählten Betriebsstunden löschen möchte. "**Letzter Lauf**" und "**aktueller Lauf**" werden dadurch **nicht** gelöscht

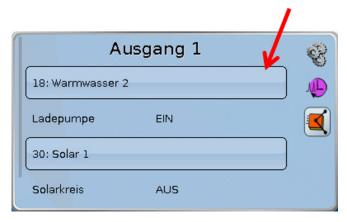
Impulse	Unterhalb der Betriebsstunden können die Impulse (Schaltungen) abgelesen werden.
Impulse 3	
Impulse Vortag 0	Es werden die Gesamtzahl der Impulse (Einschaltungen), die Impulszahl des Vortags und von heute angezeigt.
Impulse heute 2	
	Nach Tippen auf das Schaltfeld wird abgefragt,
Impulse heute löschen	ob man die heute gezählten Impulse löschen möchte.

- **ACHTUNG:** Die Zählerstände werden jede Stunde in den internen Speicher geschrieben. Bei einem Stromausfall kann daher die Zählung von maximal 1 Stunde verlorengehen.
- Beim Laden von Funktionsdaten wird abgefragt, ob die gespeicherten Zählerstände übernommen werden sollen (siehe Anleitung "Programmierung Teil 1: Allgemeine Hinweise").

Zählerrücksetzung


Nach Tippen auf ein Schaltfeld "Löschen" wird abgefragt, ob man die gesamten Zählerstände oder den heutigen Zählerstand löschen möchte.

Die Sicherheitsabfrage wird entweder durch Antippen des Häkchens (= Ja) oder des Kreuzes (= Nein) beantwortet.


Nach dem Löschen der Gesamtzählerstände wird das aktuelle Tagesdatum angezeigt.

Anzeige der Verknüpfungen 🌉

Nach Anwahl des Symbols werden für den Ausgang die Verknüpfungen mit den Funktionen angezeigt.

Beispiel:


In diesem Beispiel wird der Ausgang 1 von 2 Funktionen angesteuert, wobei er gerade von der Funktion 18 (Warmwasser 2) eingeschaltet wird.

Durch Anwahl einer Funktion gelangt man direkt in das Menü der Funktion.

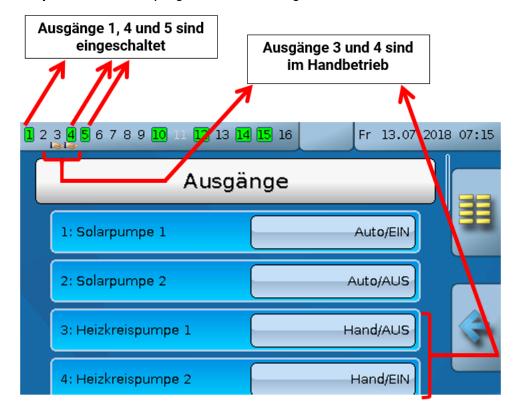
Blockierschutz

Umwälzpumpen, die längere Zeit nicht laufen (z.B. Heizkreispumpe während des Sommers), haben oft Anlaufprobleme in Folge innerer Korrosion. Dieses Problem lässt sich umgehen, indem die Pumpe periodisch für 30 Sekunden eingeschaltet wird.

Das nach dem Ausgang 16 angefügte Menü **Blockierschutz** erlaubt es, einen Zeitpunkt sowie alle Ausgänge anzugeben, die einen Blockierschutz erhalten sollen.

Beispiel:

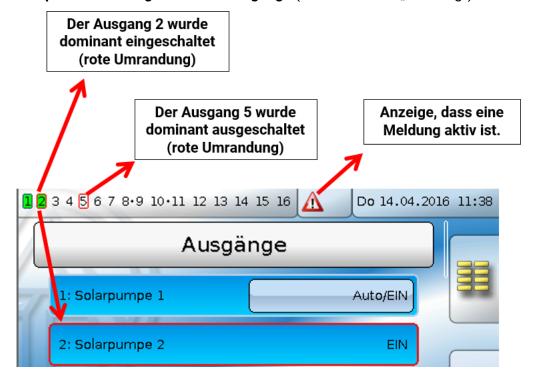
Am Dienstag und am Freitag werden um 16:30 Uhr die in der **Ausgangs-Zuordnung** ausgewählten Ausgänge für 30 Sekunden eingeschaltet, wenn der Ausgang seit dem Reglerstart bzw. dem letzten Aufruf des Blockierschutzes nicht aktiv war.



Die Ausgänge 3, 4, 6 und 7 wurden ausgewählt.

Der Regler schaltet nicht alle Ausgänge zugleich ein, sondern beginnt mit einem Ausgang, schaltet nach 30 Sekunden zum nächsten, und so weiter.

Displayanzeige


Beispiel einer bereits programmierten Anlage:

Die eingeschalteten Ausgänge werden grün hervorgehoben.

Ausgänge im **Handbetrieb** werden durch ein **Handsymbol** unterhalb der Ausgangsnummer gekennzeichnet.

Beispiel: Dominant geschaltete Ausgänge (durch Funktion "Meldung"):

Fixwerte

In diesem Menü können bis zu **64 Fixwerte** definiert werden, die z.B. als Eingangsvariablen von Funktionen verwendet werden können.

Nach Anwahl im Hauptmenü werden die bereits definierten Fixwerte mit ihrer Bezeichnung und dem aktuellen Wert bzw. Zustand angezeigt.

Beispiel:

Parametrierung

Beispiel: Fixwert 1

Fixwerttyp

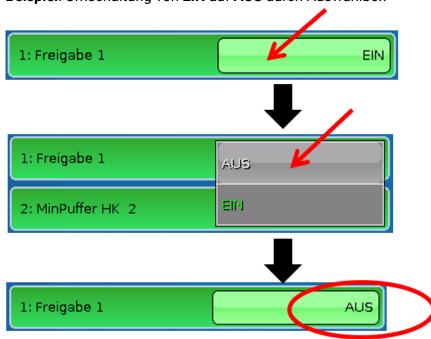
Nach Auswahl des gewünschten Fixwert erfolgt die Festlegung des Fixwerttyps.

- Digital
- Analog
- Impuls

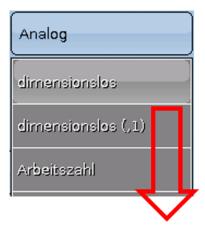
Digital

Auswahl der Messgröße

- · Aus / Ein
- · Nein / Ja

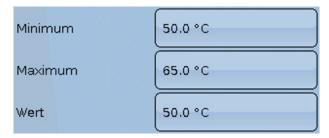

Auswahl, ob der Status über eine Auswahlbox oder durch einfachen Klick umgeschaltet werden kann.

Ändern eines digitalen Fixwertes


Durch Anwahl des **hell unterlegten** Schaltfelds kann der Fixwert über eine **Auswahlbox** oder durch **Antippen** ("Klick") geändert werden. Ist der Status nicht hell unterlegt, kann der Status aus der angemeldeten Benutzerebene nicht geändert werden.

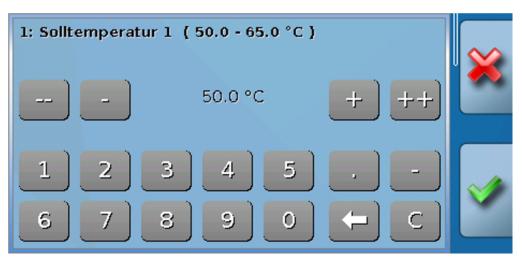
Beispiel: Umschaltung von EIN auf AUS durch Auswahlbox

Analog


Auswahl aus einer Vielzahl von Funktionsgrößen

Für Fixwerte steht auch die Funktionsgröße Uhrzeit (Darstellung: 00:00) zur Verfügung.

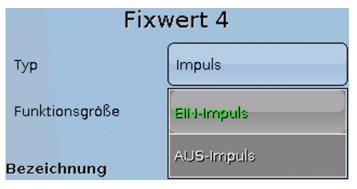
Nach Vergabe der **Bezeichnung** erfolgt die Festlegung der erlaubten Grenzen und des aktuellen Fixwertes. Innerhalb dieser Grenzen kann der Wert im Menü verstellt werden.


Beispiel:

Ändern eines analogen Fixwertes

Durch Antippen des **hell unterlegten** Schaltfeldes kann der Fixwert über eine Zahlentastatur geändert werden. Ist der Wert nicht hell unterlegt, kann der Status aus der angemeldeten Benutzerebene nicht geändert werden.

Impuls


Mit diesem Fixwert können kurze **Impulse** durch Antippen im Menü "Fixwerte" erzeugt werden. **Beispiel:**

Im Menü des Fixwertes kann ebenfalls ein Impuls durch Antippen ausgelöst werden.

Funktionsgröße

Auswahl der **Funktionsgröße**: Bei Betätigung wird wahlweise ein EIN-Impuls (von AUS auf EIN) oder ein AUS-Impuls (von EIN auf AUS) erzeugt.

Bezeichnung

Eingabe der Fixwertbezeichnung durch Auswahl vorgegebener Bezeichnungen oder benutzerdefinierter Bezeichnungen.

Zusätzlich kann jeder Bezeichnung eine Zahl 1 – 16 zugeordnet werden.

Einschränkung der Veränderbarkeit

Für **alle** Fixwerte kann eingestellt werden, aus welcher Benutzerebene der Fixwert verändert werden darf:

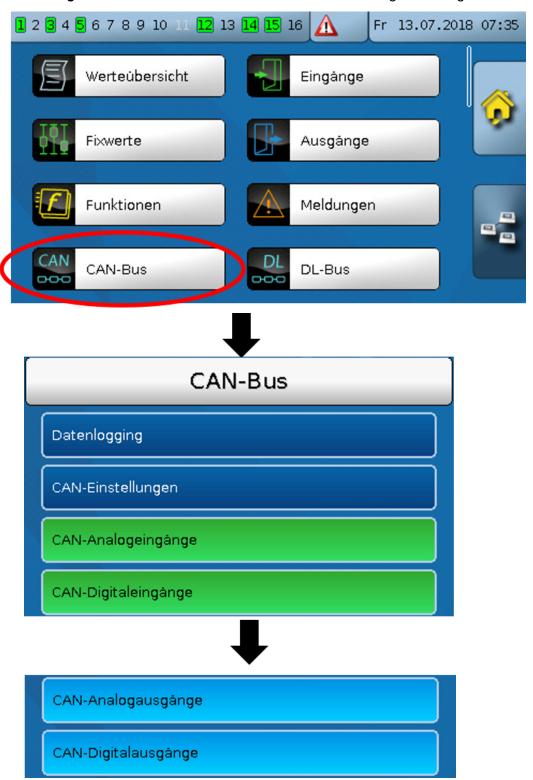
Meldungen

Dieses Menü zeigt aktivierte Meldungen an.

Beispiel: Meldung 21 ist aktiv.

Ist mindestens eine Meldung aktiv, so wird in der oberen Statuszeile ein Warndreieck eingeblendet. Wurde die Meldung verborgen, kann durch Antippen des Dreiecks das Pop-Up-Fenster der Meldung angezeigt werden.

Genauere Erläuterungen zu den Meldungen werden in der Anleitung "Programmierung / Teil 2: Funktionen, Kapitel Meldung" angeführt.

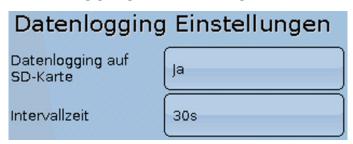

CAN-Bus

Das CAN-Netzwerk ermöglicht die Kommunikation zwischen CAN-Busgeräten. Durch das Versenden von analogen oder digitalen Werten über CAN-**Ausgänge** können andere CAN-Busgeräte diese Werte als CAN-**Eingänge** übernehmen.

Dieses Menü enthält alle Angaben und Einstellungen, die für den Aufbau eines CANopen-Netzwerkes notwendig sind. Es können bis zu 62 CAN-Busgeräte in einem Netz betrieben werden.

Jedes CAN-Busgerät muss eine eigene Knotennummer im Netz erhalten.

Der Leitungsaufbau eines CAN-Busnetzes wird in der Montageanleitung beschrieben.


Datenlogging

Im Anwendermodus ist dieses Menü nicht sichtbar.

In diesem Menü werden die Einstellungen für das Datenlogging über CAN-Bus oder auf der SD-Karte des Reglers für analoge und digitale Werte definiert.

Datenlogging Einstellungen

Hier wird festgelegt, ob die Loggingwerte auch auf der SD-Karte des Reglers gespeichert werden sollen und wenn ja, in welchen Intervallen.

Die geloggten Tagesdateien werden im Ordner LOG/Jahreszahl gespeichert. Das Logging erfolgt nur bei eingelegter SD-Karte.

Falls der freie Speicherplatz der SD-Karte un-

ter 50 MB fällt, werden die ältesten Tagesdateien automatisch gelöscht. Die geloggten Werte können mit der Software *Winsol* aus der SD-Karte ausgelesen werden (Siehe Anleitung für *Winsol*).

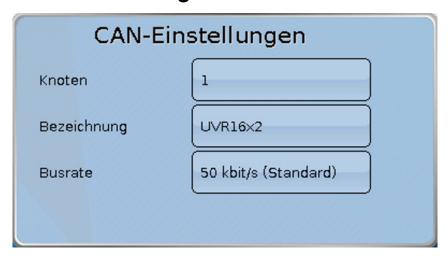
Datenlogging Analog / Digital

Die Einstellungen gelten sowohl für das Datenlogging auf der SD-Karte des Reglers als auch für das CAN-Datenlogging mit dem C.M.I.

Jeder Regler kann max. 64 digitale und 64 analoge Werte ausgeben, die in diesen Untermenüs definiert werden. Im Gegensatz zur Datenaufzeichnung über DL-Bus sind die Daten für das Logging über CAN-Bus frei wählbar.

Die Quellen für die zu loggenden Werte können Eingänge, Ausgänge, Funktions-Ausgangsvariable, Fixwerte, Systemwerte, DL- und CAN-Buseingänge sein.

Hinweis: Digitale Eingänge müssen im Bereich der digitalen Werte definiert werden.


Es können beliebige Werte aus den Zählerfunktionen geloggt werden (Energiezähler, Wärmemengenzähler, Zähler). Die zu loggenden Werte der Zähler werden wie alle anderen analogen Werte in die Liste "Datenlogging Analog" eingetragen.

Für das CAN-Datenlogging ist am C.M.I. eine Mindestversion 1.25 und eine Winsol-Mindestversion 2.06 erforderlich.

Das CAN-Datenlogging ist ausschließlich mit dem C.M.I. möglich. Es erfolgt keine ständige Datenausgabe. Auf Anfrage eines C.M.I. speichert der Regler die aktuellen Werte in einem Logging-Puffer und sperrt diesen gegen erneutes Überschreiben (bei Anforderungen eines zweiten C.M.I.), bis die Daten ausgelesen und der Logging-Puffer wieder freigegeben wurde.

Die notwendigen Einstellungen des C.M.I. für das Datenlogging über CAN-Bus sind in der Online-Hilfe des C.M.I. beschrieben.

CAN-Einstellungen

Knoten

Festlegung der **eigenen** CAN-Knotennummer (Einstellbereich: 1 – 62). Das Gerät mit der Knotennummer 1 gibt den Zeitstempel für alle anderen CAN-Busgeräte vor.

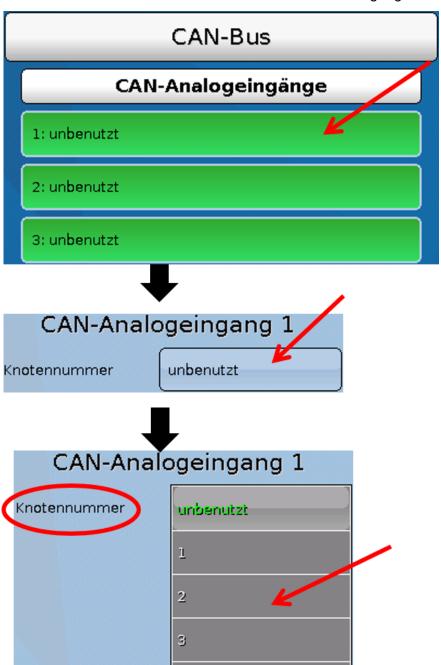
Bezeichnung

Jedem Regler kann eine eigene Bezeichnung zugeordnet werden.

Busrate

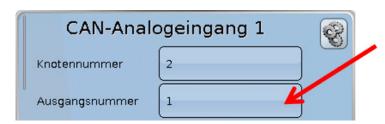
Die Standard-Busrate des CAN-Netzwerkes ist **50 kbit/s** (50 kBaud), die für die meisten CAN-Busgeräte vorgegeben ist.

Wichtig: Es müssen <u>alle</u> Geräte im CAN-Busnetz die <u>gleiche</u> Übertragungsrate haben um miteinander kommunizieren zu können.


Die Busrate kann zwischen 5 und 500 kbit/s eingestellt werden, wobei bei niedrigeren Busraten längere Kabelnetze möglich sind.

Busrate [kbit/s]	maximal erlaubte Gesamtbuslänge [m]
5	10.000
10	5.000
20	2.500
50 (Standard)	1.000
125	400
250	200
500	100

Bei einem Totalreset aus dem Menü "Datenverwaltung" bleiben die Einstellungen für die Knotennummer und die Busrate erhalten.


CAN-Analogeingänge

Es können bis zu 64 CAN-Analogeingänge programmiert werden. Diese werden durch die Angabe der **Sender**-Knotennummer sowie der Nummer des CAN-Ausganges des **Sende**knotens festgelegt.

Knotennummer

Nach Eingabe der Knotennummer des **Sendeknotens** werden die weiteren Einstellungen vorgenommen. Vom Gerät mit dieser Knotennummer wird der Wert eines CAN-Analogausgangs übernommen. **Beispiel:** Am CAN-Analog**eingang** 1 wird **vom** Gerät mit der Knotennummer 2 der Wert des CAN-Analog**ausgangs** 1 übernommen.

Bezeichnung

Jedem CAN-Eingang kann eine eigene Bezeichnung gegeben werden. Die Auswahl der Bezeichnung erfolgt wie bei den Eingängen aus verschiedenen Bezeichnungsgruppen oder benutzerdefiniert.

Beispiel:

CAN-Bus Timeout

Festlegung der Timeoutzeit des CAN-Eingangs (Mindestwert: 5 Minuten).

Solange die Information laufend vom CAN-Bus eingelesen wird, ist der **Netzwerkfehler** des CAN-Eingangs "**Nein**".

Liegt die letzte Aktualisierung des Wertes schon länger als die eingestellte Timeoutzeit zurück, geht der **Netzwerkfehler** von "**Nein**" auf "**Ja**". Dann kann festgelegt werden, ob der zuletzt übermittelte Wert oder ein auswählbarer Ersatzwert ausgegeben wird (nur bei Einstellung Messgröße: **Benutzer**).

Da der **Netzwerkfehler** als Quelle einer Funktions-Eingangsvariablen ausgewählt werden kann, kann auf den Ausfall des CAN-Busses oder des Sendeknotens entsprechend reagiert werden.

In den Systemwerten / Allgemein steht der Netzwerkfehler aller CAN-Eingänge zur Verfügung.

Sensorcheck

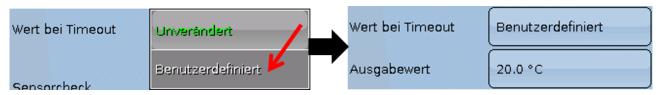
Mit Sensorcheck "Ja" steht der Sensorfehler des Sensors, von dem der CAN-Eingang übernommen wird, als Eingangsvariable einer Funktion zur Verfügung.

Messgröße

Wird als Messgröße "Automatisch" übernommen, so wird die Einheit, die der Senderknoten vorgibt, im Regler angewendet.

Bei Auswahl "Benutzer" können eine eigene Einheit, eine Sensorkorrektur und bei aktivem Sensorcheck eine Überwachungsfunktion ausgewählt werden.

Jedem CAN-Eingang wird eine eigene Einheit zugeordnet, die abweichend zur Einheit des Sendeknotens sein kann. Es stehen verschiedene Einheiten zur Verfügung.

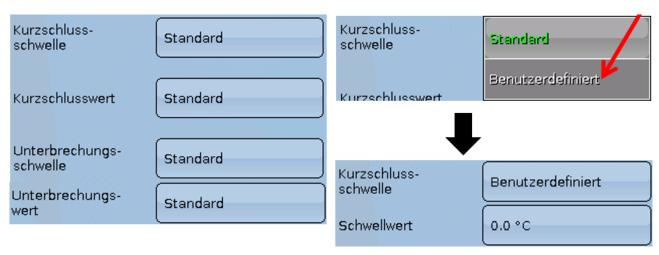


Diese Auswahl wird nur bei Messgröße "Benutzer" angezeigt.

Wert bei Timeout

Diese Auswahl wird nur bei Messgröße "Benutzer" angezeigt.

Wird die Timeout-Zeit überschritten, kann festgelegt werden. ob der zuletzt übermittelte Wert ("Unverändert") oder ein einstellbarer Ersatzwert ausgegeben wird.


Sensorkorrektur

Diese Auswahl wird nur bei Messgröße "Benutzer" angezeigt.

Der Wert des CAN-Eingangs kann um einen festen Wert korrigiert werden.

Sensorfehler

Diese Auswahl wird nur bei aktivem Sensorcheck und bei Messgröße "Benutzer" angezeigt.

Bei aktivem "Sensorcheck" steht der Sensorfehler eines CAN-Eingangs als Eingangsvariable von Funktionen zur Verfügung: Status "Nein" für einen korrekt arbeitenden Sensor und "Ja" für einen Defekt (Kurzschluss oder Unterbrechung). Damit kann z.B. auf den Ausfall eines Sensors reagiert werden

Werden die **Standard**-Schwellen gewählt, dann wird ein Kurzschluss bei Unterschreiten der **Messgrenze** und eine Unterbrechung bei Überschreiten der **Messgrenze** angezeigt.

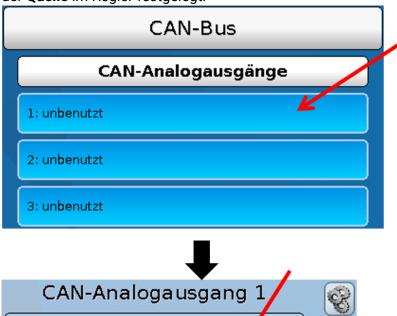
Die **Standard**-Werte für Temperatursensoren sind bei Kurzschluss -9999,9°C und bei Unterbrechung 9999,9°C. Diese Werte werden im Fehlerfall für die internen Berechnungen herangezogen.

Durch geeignete Auswahl der Schwellen und Werte für Kurzschluss oder Unterbrechung kann bei Ausfall eines Sensors am Sendeknoten dem Regler ein fixer Wert vorgegeben werden, damit eine Funktion im Notbetrieb weiterarbeiten kann (fixe Hysterese: 1,0°C).

Die Kurzschlussschwelle kann nur unterhalb der Unterbrechungsschwelle definiert werden.

In den **Systemwerten** / Allgemein steht der Sensorfehler **aller** Eingänge, CAN- und DL-Eingänge zur Verfügung.

CAN-Digitaleingänge


Es können bis zu 64 CAN-Digitaleingänge programmiert werden. Diese werden durch die Angabe der **Sender**-Knotennummer sowie der Nummer des CAN-Ausganges des **Sende**knotens festgelegt.

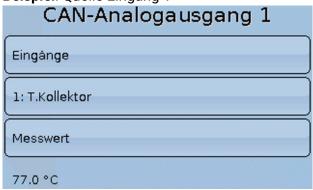
Die Parametrierung ist fast identisch mit jener der CAN-Analogeingänge.

Unter **Messgröße** /**Benutzer** kann die **Anzeige** für den CAN-Digitaleingang von **AUS** / **EIN** auf **Nein** / **Ja** geändert werden und es kann festgelegt werden, ob bei Überschreiten der Timeout-Zeit der zuletzt übermittelte Status ("Unverändert") oder ein auswählbarer Ersatzstatus ausgegeben wird.

CAN-Analogausgänge

Es können bis zu 32 CAN-Analogausgänge programmiert werden. Diese werden durch die Angabe der **Quelle** im Regler festgelegt.

Angabe der Quelle im Regler, von jener der Wert für den CAN-Ausgang stammt.


Eingänge
 Fixwerte

AusängeSystemwerte

Funktionen
 DL-Bus

Beispiel: Quelle Eingang 1

unbenutzt

Bezeichnung und Sendebedingung

Jedem CAN-Analogausgang kann eine eigene Bezeichnung gegeben werden. Die Auswahl der Bezeichnung erfolgt wie bei den Eingängen aus verschiedenen Bezeichnungsgruppen oder benutzerdefiniert.

Beispiel:

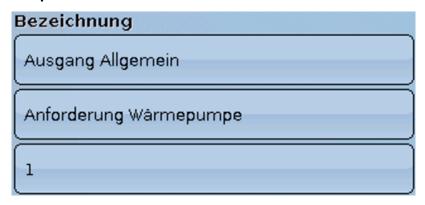
Sendebedingung

Beispiel:

Sendebedingung	
bei Änderung >	1.0 K
Blockierzeit	10s
Intervallzeit	5m

bei Änderung > 1.0 K	Bei einer Änderung des aktuellen Wertes gegenüber dem zuletzt gesendeten von mehr als 1,0K wird erneut gesendet. Es wird die Einheit der Quelle übernommen (Mindestwert: 0,1K).
Blockierzeit 10 s	Ändert sich der Wert innerhalb von 10 Sek. seit der letzten Übertragung um mehr als 1,0K wird der Wert trotzdem erst nach 10 Sek. erneut übertragen (Mindestwert: 1 Sek.).
Intervallzeit 5 m	Der Wert wird auf jeden Fall alle 5 Minuten übertragen, auch wenn er sich seit der letzten Übertragung nicht um mehr als 1,0K geändert hat (Mindestwert: 1 Minute).

CAN-Digitalausgänge


Es können bis zu 32 CAN-Digitalausgänge programmiert werden. Diese werden durch die Angabe der **Quelle** im Regler festgelegt.

Die Parametrierung ist bis auf die Sendebedingungen identisch mit jener der CAN-Analogausgänge.

Bezeichnung und Sendebedingungen

Jedem CAN-Digitalausgang kann eine eigene Bezeichnung gegeben werden. Die Auswahl der Bezeichnung erfolgt wie bei den Eingängen aus verschiedenen Bezeichnungsgruppen oder benutzerdefiniert.

Beispiel:

Sendebedingung

Beispiel:

Sendebedingung	
bei Änderung	Nein
Blockierzeit	10s
Intervallzeit	5m

bei Änderung Ja/Nein	Senden der Nachricht bei einer Zustandsänderung
Blockierzeit 10 s	Ändert sich der Wert innerhalb von 10 Sek. seit der letzten Übertragung, wird der Wert trotzdem erst nach 10 Sek. erneut übertragen (Mindestwert: 1 Sek.).
Intervallzeit 5 m	Der Wert wird auf jeden Fall alle 5 Minuten übertragen, auch wenn er sich seit der letzten Übertragung nicht geändert hat (Mindestwert: 1 Minute).

Aktive CAN-Knoten

Durch Antippen des Feldes werden die aktiven CAN-Knoten im CAN-Busnetz angezeigt. Mit "**Status**" wird der CAN-Bus-Status des Reglers angezeigt. Der Status wechselt nach dem Reglerstart nach einem vorgeschriebenen Verfahren automatisch von *init.* \rightarrow *preop*(*erational*) \rightarrow *operat*(*ional*). Erst dann kann mit anderen CAN-Busgeräten kommuniziert werden.

In dieser Ansicht wird ein RSM610 mit der Knotennummer 32 im CAN-Busnetz angezeigt.

Durch Antippen eines CAN-Busgerätes der x2-Serie gelangt man in das Menü des Gerätes.

Andere CAN-Busgeräte und das C.M.I. werden zwar angezeigt, ein Einstieg in deren Menüs ist aber nicht möglich.

Um wieder in das Menü des eigenen Reglers zu gelangen, wird der Regler in dieser Übersicht angetippt.

DL-Bus

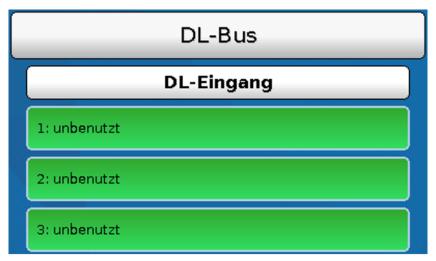
Der DL-Bus dient als Busleitung für diverse Sensoren und/oder zur Messwertaufzeichnung ("Datenlogging") mittels C.M.I. oder D-LOGG.

Der DL-Bus ist eine bidirektionale Datenleitung und nur mit Produkten der Fa. Technische Alternative kompatibel. Das DL-Busnetz arbeitet unabhängig vom CAN-Busnetz.

Dieses Menü enthält alle Angaben und Einstellungen, die für den Aufbau eines DL-Bus-Netzwerkes notwendig sind.

Der Leitungsaufbau eines DL-Busnetzes wird in der Montageanleitung des Reglers beschrieben

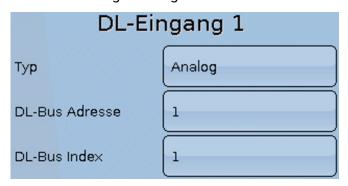
DL-Einstellungen


Über diese Schaltfläche kann die Datenausgabe für das Datenlogging über DL-Bus und für die Anzeigen im Raumsensor RAS-PLUS ein- oder ausgeschaltet werden. Für das DL-Datenlogging wird das C.M.I. verwendet. Es werden nur die Ein- und Ausgangswerte und 2 Wärmemengenzähler, aber keine Werte der Netzwerkeingänge ausgegeben.

DL-Eingang

Über einen DL-Eingang werden Sensorwerte von DL-Bussensoren übernommen.

Es können bis zu 32 DL-Eingänge programmiert werden.


Beispiel: Parametrierung des DL-Eingangs 1

Auswahl: Analog oder Digital

DL-Bus Adresse und DL-Bus Index

Jeder DL-Sensor muss eine eigene **DL-Busadresse** haben. Die Einstellung der Adresse des DL-Sensors wird im Sensor-Datenblatt beschrieben.

Die meisten DL-Sensoren können verschiedene Messwerte erfassen (z.B. Volumenstrom und Temperaturen). Es muss für jeden Messwert ein eigener **Index** angegeben werden. Der zutreffende Index kann den dem Datenblatt des DL-Sensors entnommen werden.

Bezeichnung

Jedem DL-Eingang kann eine eigene Bezeichnung gegeben werden. Die Auswahl der Bezeichnung erfolgt wie bei den Eingängen aus verschiedenen Bezeichnungsgruppen oder benutzerdefiniert.

Beispiel:

DL-Bus Timeout

Solange die Information laufend vom DL-Bus eingelesen wird, ist der **Netzwerkfehler** des DL-Eingangs "**Nein**".

Wird nach dreimaliger Abfrage des DL-Sensorwertes durch den Regler kein Wert übermittelt, so geht der **Netzwerkfehler** von "**Nein**" auf "**Ja**". Dann kann festgelegt werden, ob der zuletzt übermittelte Wert oder ein auswählbarer Ersatzwert ausgegeben wird (nur bei Einstellung Messgröße: **Benutzer**).

Da der **Netzwerkfehler** auch als Quelle einer Funktions-Eingangsvariablen ausgewählt werden kann, kann auf einen Ausfall des DL-Busses oder des DL-Sensors entsprechend reagiert werden.

In den Systemwerten / Allgemein steht der Netzwerkfehler aller DL-Eingänge zur Verfügung.

Sensorcheck

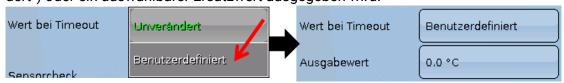
Mit Sensorcheck "Ja" steht der Sensorfehler des Sensors, von dem der DL-Eingang übernommen wird, als Eingangsvariable einer Funktion zur Verfügung.

Messgröße

Wird als Messgröße "Automatisch" übernommen, so wird die Einheit, die der DL-Sensor vorgibt, im Regler angewendet.

Bei Auswahl "Benutzer" können eine eigene Einheit, eine Sensorkorrektur und bei aktivem Sensorcheck eine Überwachungsfunktion ausgewählt werden.

Jedem DL-Eingang wird eine **Einheit** zugeordnet, die abweichend zur Einheit des DL-Sensors sein kann. Es steht eine Vielzahl an Einheiten zur Verfügung.

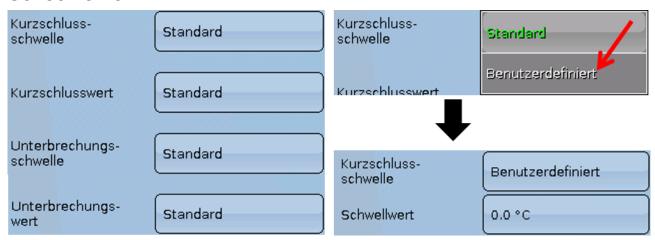


Diese Auswahl wird nur bei Messgröße "Benutzer" angezeigt.

Wert bei Timeout

Diese Auswahl wird nur bei Messgröße "Benutzer" angezeigt.

Wird ein Timeout festgestellt, kann festgelegt werden. ob der zuletzt übermittelte Wert ("Unverändert") oder ein auswählbarer Ersatzwert ausgegeben wird.


Sensorkorrektur

Diese Auswahl wird nur bei Messgröße "Benutzer" angezeigt.

Der Wert des DL-Eingangs kann um einen festen Differenzwert korrigiert werden.

Sensorfehler

Diese Auswahl wird nur bei aktivem Sensorcheck und bei Messgröße "Benutzer" angezeigt.

Bei aktivem "Sensorcheck" steht der Sensorfehler eines DL-Eingangs als Eingangsvariable von Funktionen zur Verfügung: Status "Nein" für einen korrekt arbeitenden Sensor und "Ja" für einen Defekt (Kurzschluss oder Unterbrechung). Damit kann z.B. auf den Ausfall eines Sensors reagiert werden.

Werden die **Standard**-Schwellen gewählt, dann wird ein Kurzschluss bei Unterschreiten der **Messgrenze** und eine Unterbrechung bei Überschreiten der **Messgrenze** angezeigt.

Die **Standard**-Werte für Temperatursensoren sind bei Kurzschluss -9999,9°C und bei Unterbrechung 9999,9°C. Diese Werte werden im Fehlerfall für die internen Berechnungen herangezogen.

Durch geeignete Auswahl der Schwellen und Werte für Kurzschluss oder Unterbrechung kann bei Ausfall eines Sensors am Sendeknoten dem Regler ein fixer Wert vorgegeben werden, damit eine Funktion im Notbetrieb weiterarbeiten kann (fixe Hysterese: 1,0°C).

Die Kurzschlussschwelle kann nur unterhalb der Unterbrechungsschwelle definiert werden.

In den **Systemwerten** / Allgemein steht der Sensorfehler **aller** Eingänge, CAN- und DL-Eingänge zur Verfügung.

DL-Digitaleingänge

Der DL-Bus ist so konzipiert, dass auch Digitalwerte übernommen werden können. Derzeit gibt es aber noch keinen Anwendungsfall dafür.

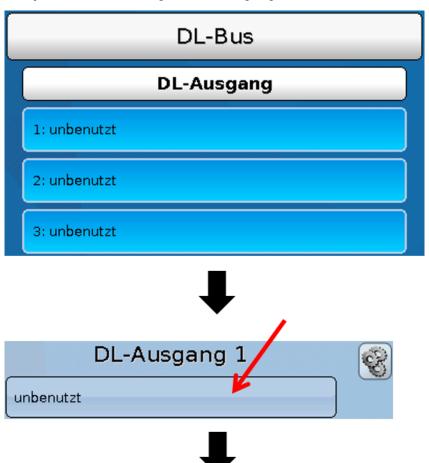
Die Parametrierung ist fast identisch mit jener der DL-Analogeingänge.

Unter **Messgröße /Benutzer** kann die **Anzeige** für den DL-Digitaleingang auf **Nein/Ja** geändert werden.

Buslast von DL-Sensoren

Die Versorgung und die Signalübergabe von DL-Sensoren erfolgt **gemeinsam** über eine 2-polige Leitung. Eine zusätzliche Unterstützung der Stromversorgung durch ein externes Netzgerät (wie beim CAN-Bus) ist nicht möglich.

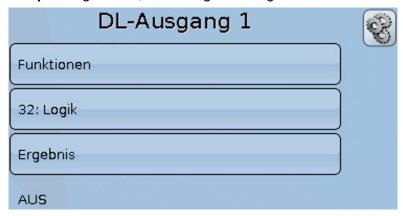
Durch den relativ hohen Strombedarf der DL-Sensoren muss die "Buslast" beachtet werden:


Der Regler UVR 16x2 liefert die maximale Buslast von **100**%. Die Buslasten der DL-Sensoren werden in den technischen Daten der jeweiligen DL-Sensoren angeführt.

Beispiel: Der DL-Sensor FTS4-50DL hat eine Buslast von **25**%. Es können daher maximal vier FTS4-50DL an den DL-Bus angeschlossen werden.

DL-Ausgang

Über einen DL-Ausgang können Analog- und Digitalwerte in das DL-Busnetz gesendet werden. Z.B. kann ein **Digitalbefehl** zum Aktivieren eines O_2 -Sensors O_2 -DL ausgegeben werden.


Beispiel: Parametrierung des DL-Ausgangs 1

Angabe der Quelle im Regler, von jener der Wert für den DL-Ausgang stammt.

- Eingänge
- Ausgänge
- Funktionen
- Fixwerte
- Systemwerte
- · CAN-Bus Analog
- CAN-Bus Digital

Beispiel: Digitalwert, Quelle Ergebnis Logik-Funktion

Bezeichnung und Zieladresse

Bezeichnung und Angabe der Zieladresse des DL-Sensors, der aktiviert werden soll.

Für die Aktivierung des O₂-Sensors hat der Index keinen Einfluss und kann vernachlässigt werden.

Beispiele:

Zieladresse	
DL-Bus Adresse	
DL-Bus Index	1

Grundeinstellungen

In diesem Menü werden Einstellungen durchgeführt, die in der Folge für alle weiteren Menüs gelten.

Sprache

Auswahl der Displaysprache.

Helligkeit

Auswahl der Displayhelligkeit zur Anpassung an die Umgebungshelligkeit (Einstellbereich: 5,0 – 100,0%.

Display Timeout

Das Display wird nach einer einstellbaren Zeit, während der vom Benutzer keine Aktivitäten gesetzt werden, abgeschaltet. Durch Antippen der Bedienoberfläche wird das Display wieder aktiviert (Einstellbereich: 5 Sekunden bis 30 Minuten)

Simulation

Möglichkeit, den Simulationsmodus zu aktivieren (nur im Expertenmodus möglich):

- Keine Mittelwertbildung der Außentemperatur in der Heizkreisregelung.
- Alle Eingänge werden als PT1000 Fühler vermessen, auch wenn eine andere Sensortype definiert ist.
- Keine Auswertung eines Raumsensors als RAS.

Auswahl: AUS

Analog – Simulation mit dem Entwicklungsset EWS16x2

CAN-Simboard – Simulation mit dem SIM-BOARD-USB-UVR16x2 zur Simulation in einer Anlage

Der Simulationsmodus wird automatisch beim Verlassen der Expertenebene beendet.

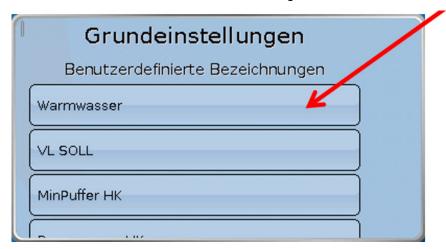
Währung

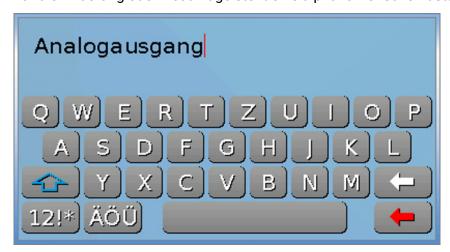
Auswahl der Währung für die Ertragszählung.

Zugang Menü

Festlegung, aus welcher Benutzerebene der Zugang zum Hauptmenü erlaubt wird.

Ist der Zugang zum Menü nur dem **Fachmann** oder dem **Experten** erlaubt, muss bei Anwahl des Hauptmenüs aus der Startseite der Funktionsübersicht (Schaltfläche) das entsprechende **Passwort** eingegeben werden.


Beim **Neustart** des Reglers wird entweder die **Funktionsübersicht** (falls geladen) oder bei eingeschränktem Zugang die **Tastatur** für das Passwort angezeigt.


Benutzerdefinierte Bezeichnungen

In diesem Menü kann man **für alle Elemente des Reglers** benutzerdefinierten Bezeichnungen eingeben, ändern oder löschen. Dieses Menü kann nur aus der Fachmann- oder Expertenebene angewählt werden.

Ansicht mit bereits definierten Bezeichnungen

Für die Änderung oder Neuanlage steht eine alphanumerische Tastatur zur Verfügung.

Es können **bis zu 100 verschiedene** Bezeichnungen vom Benutzer definiert werden. Die maximale Zeichenanzahl pro Bezeichnung ist **24.**

Die bereits definierten Bezeichnungen stehen allen Elementen (Eingänge, Ausgänge, Funktionen, Fixwerte, Bus-Ein- und Ausgänge) zur Verfügung.

Benutzer

Aktueller Benutzer

Auswahl, ob der Benutzer Experte, Fachmann oder Anwender ist.

Zum Einstieg in die Fachmann- oder Expertenebene ist die Eingabe eines **Passwortes** notwendig, das vom Programmierer vorgegeben werden kann.

Nach dem Laden von Funktionsdaten aus der Experten- oder Fachmannebene springt der Regler in die Anwenderebene zurück und übernimmt die programmierten Passwörter.

Nach einem Reglerstart befindet sich der Regler immer in der Anwenderebene.

Passwort ändern

Der **Experte** kann die Passwörter für Fachmann **und** Experte ändern. Der **Fachmann** kann nur das Fachmann-Passwort ändern. Die Länge des Passworts und die Art der Zeichen sind beliebig.

Zur Änderung eines Passworts ist zuerst die Eingabe des alten Passwortes erforderlich.

Liste der erlaubten Aktionen

Benutzer	Anzeigen und erlaubte Aktionen
Anwender	Funktionsübersicht mit Bedienmöglichkeit
	 Zugang zum Hauptmenü nur, wenn in den "Grundeinstellungen" für "Anwender" freigegeben
	Werteübersicht
	Eingänge: nur Anzeige, kein Einstieg in die Parameter
	 Ausgänge: Änderung des Ausgangsstatus der für den Anwender freigegebenen Ausgänge, Anzeige der Betriebsstunden, kein Einstieg in die Parameter
	 Fixwerte: Änderung des Wertes oder des Status der für den Anwender freigege- benen Fixwerte, kein Einstieg in die Parameter
	Funktionen: Anzeige des Funktionsstatus, kein Einstieg in die Parameter
	 Meldungen: Anzeige aktiver Meldungen, Meldungen verbergen und löschen CAN- und DL-Bus: kein Einstieg in die Parameter
	Grundeinstellungen: Sprache, Helligkeit und Display Timeout veränderbar
	Benutzer: Änderung Benutzer (mit Passworteingabe)
	Systemwerte: Einstellung von Datum, Uhrzeit, Standortdaten, Anzeige der Systemwerte
Fachmann	Zusätzlich:
	 Zugang zum Hauptmenü nur, wenn in den "Grundeinstellungen" für Fachmann oder Anwender freigegeben
	 Änderung der Parameter für Eingänge (außer Typ und Messgröße), keine Neude- finition
	 Änderung der Parameter für Ausgänge (außer Typ; Status nur, wenn für Anwender oder Fachmann freigegeben), keine Neudefinition
	 Änderung der Parameter für Fixwerte (außer Typ und Messgröße, Wert oder Status nur, wenn für Anwender oder Fachmann freigegeben), keine Neudefinition
	 Grundeinstellungen: Änderung und Neudefinition benutzerdefinierter Bezeich- nungen, Auswahl der Währung
	 Funktionen: Änderung von benutzerdefinierten Eingangsvariablen und Parametern, Ausgangsvariable sind sichtbar
	• alle Einstellungen in den Menüs CAN- und DL-Bus
	Aktionen der Datenverwaltung
Experte	Dem Experten sind alle Aktionen erlaubt und alle Anzeigen zugänglich.

Automatische Umschaltung

Im Normalfall schaltet der Regler automatisch 30 Minuten **nach dem Einloggen** als Experte oder Fachmann in den **Anwendermodus** zurück.

Für Programmier- oder Testzwecke kann diese automatische Umschaltung ausgeschaltet werden, indem der Experte das Menü "Experten-Passwort ändern" wählt, zuerst das alte Passwort und dann <u>nichts</u> eingibt (also auch nicht "0") und mit dem Häkchen bestätigt.

Das gleiche ist sinngemäß auch für das Fachmann-Kennwort möglich.

Wird eine neue Programmierung geladen, springt der Regler wieder in die Anwenderebene zurück, es gilt das vom Programmierer vergebene Expertenkennwort.

Version und Seriennummer

In diesem Menü werden die Seriennummer, interne Produktionsdaten und der Namen der aktuellen Funktionsdaten (mit Datum) angezeigt.

Die Seriennummer ist auch am Leistungsschild des Reglers ersichtlich (obere Seitenfläche).

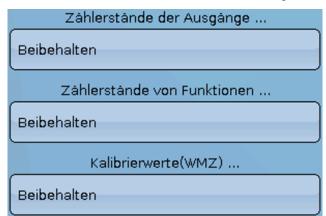
Datenverwaltung

Nur im Fachmann - oder Expertenmodus bedienbar

Folgende Aktionen können in diesem Menü durchgeführt werden:

- · Funktionsdaten speichern. laden oder löschen
- · Firmware laden
- · Funktionsübersicht laden oder löschen
- Statusanzeige des Datentransfers
- · Neustart des Reglers

Funktionsdaten


Laden...

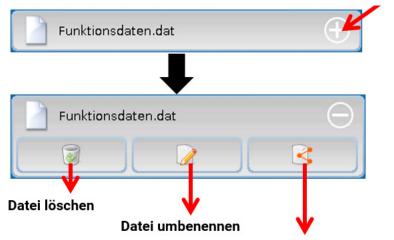
Von der SD-Karte können Funktionsdaten in den Regler oder in andere x2-Geräte geladen werden. Es können mehrere Funktionsdaten auf der SD-Karte gespeichert sein.

Der Datentransfer ist erst nach Eingabe des **Fachmann**- oder **Expertenpassworts** des Zielgeräts möglich.

Nach der Auswahl der gewünschten Funktionsdaten (*.dat-Datei) erfolgt die Abfrage, wie die Zählerstände und Kalibrierwerte des Wärmemengenzählers behandelt werden sollen.

Folgende Aktionen können ausgewählt werden:

Beibehalten	Die Zählerstände bzw. Kalibrierwerte werden vom Regler übernommen. Anwendungsbeispiel: Nach einer Programmänderung mit TAPPS2
Zurücksetzen	Die Zählerstände bzw. Kalibrierwerte werden auf null zurückgesetzt.
Laden von Funktionsdaten	Die Zählerstände bzw. Kalibrierwerte werden von den Funktionsdaten, die in den Regler geladen werden sollen, übernommen.
	Anwendungsbeispiel : Austausch eines Reglers. Die Funktionsdaten werden vom alten Regler übernommen und dessen Zählerstände sollen in den neuen Regler eingespielt werden.


Mit Antippen von ₩ werden die neuen Funktionsdaten geladen, mit ₩ wird der Vorgang abgebrochen.

Werden Funktionsdaten in den Regler geladen, wird eine Datei **_Backup.dat** mit den alten Funktionsdaten auf der SD-Karte angelegt.

Nach dem Laden von Funktionsdaten springt der Regler in die Anwenderebene zurück.

Löschen, Umbenennen und Versenden von gespeicherten Dateien

Um gespeicherte Dateien umzubenennen oder zu löschen, tippt man auf das Plus-Symbol, dann wird eine Auswahl sichtbar:

Datei an ausgewählten Knoten senden

Rückkehr aus dieser Auswahl durch nochmaliges Antippen des Symbols.

Datei löschen

Es erscheint eine Sicherheitsabfrage, die durch Antippen von ▶ bestätigt wird. Durch Antippen von ▶ wird der Vorgang abgebrochen.

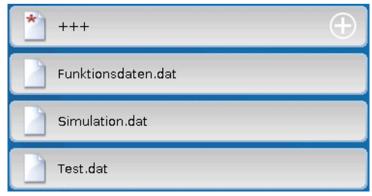
Datei umbenennen

Mit Hilfe einer Tastatur kann der Dateiname geändert werden (keine Umlaute möglich). Der Dateiname darf aus maximal 63 Zeichen bestehen und keinen Punkt oder Umlaute enthalten.

Datei an ausgewählten Knoten senden

Damit ist es möglich, Funktionsdaten an andere CAN-Busteilnehmer mit x2-Technik (z.B. RSM610, CANEZ2, CAN-I/O45) zu senden.

Auswahl der Knotennummer und abschließend Antippen von .


Speichern...

Die aktuellen Funktionsdaten können auf die SD-Karte gespeichert werden.

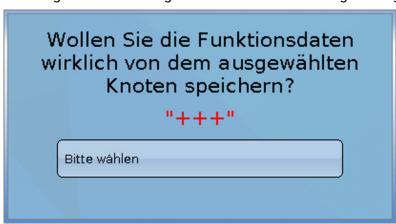
Den Funktionsdaten können eigene Bezeichnungen vergeben werden. Es können mehrere Funktionsdaten gespeichert werden.

Beispiel:

In diesem Beispiel sind bereits mehrere Funktionsdaten auf der SD-Karte gespeichert.

Sollen die Funktionsdaten unter **neuem** Namen gespeichert werden, wird in das Schaltfeld getippt. Dann ist die Vergabe eines neuen Namens möglich und die Datei

wird gespeichert (keine Umlaute möglich). Der Dateiname darf aus maximal 63 Zeichen bestehen und keinen Punkt oder Umlaute enthalten.



Um Funktionsdaten von einem anderen x2-Gerät auf die SD-Karte des Reglers zu laden, tippt man auf das Plus-Symbol.

Die Schaltfläche klappt auf und man tippt auf den grünen Pfeil.

Es erfolgt nun eine Abfrage des Knotens und die Eingabemöglichkeit eines eigenen Dateinamens.

Firmware Laden...

Von der SD-Karte kann die Firmware (= Betriebssystem, Datei *.bin) in den Regler oder auch in andere x2-Geräte (ausgenommen: andere UVR16x2) am CAN-Bus geladen werden. Es können mehrere Betriebssystemversionen auf der SD-Karte gespeichert sein.

Der Datentransfer ist erst nach Eingabe des **Fachmann**- oder **Expertenpassworts** des Zielgeräts möglich.

Wie beim Laden von Funktionsdaten können die gespeicherten Firmware-Dateien gelöscht, umbenannt oder in andere x2-Geräten geladen werden.

Datei an ausgewählten Knoten senden

Rückkehr aus dieser Auswahl durch nochmaliges Antippen des Symbols.

Funktionsübersicht Laden.../Löschen...

Von der SD-Karte kann die Funktionsübersicht (Datei *.x2d, **TA-Designer Mindestversion: 1.15**) in das Gerät geladen oder im Gerät gelöscht werden. Es können mehrere Dateien auf der SD-Karte gespeichert sein.

Nach Auswahl der Datei kommt eine Sicherheitsabfrage, da die aktuelle Funktionsübersicht im Gerät überschrieben wird.

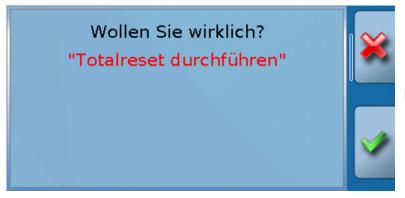
Durch "Löschen…" wird die gespeicherte Funktionsübersicht im Gerät gelöscht. Nach Auswahl der Datei kommt eine Sicherheitsabfrage.

Die Sicherheitsabfragen werden entweder mit Antippen von (= Ja) oder von (■ (= Nein) beantwortet.

Status

Hier wird angezeigt, ob ein Datentransfer mittels Datenverwaltung von der SD-Karte in den Regler oder umgekehrt erfolgreich war.

Diese Statusanzeige gilt nicht für Datentransfers **von** einem anderen Regler, einem C.M.I. oder einem CAN-Monitor.


Totalreset

Ein Totalreset ist nur aus der Fachmann- oder Expertenebene nach einer Sicherheitsabfrage möglich. Ein **Totalreset** löscht die Funktionsmodule, die Parametrierung aller Ein- und Ausgänge, Bus-Ein- und Ausgänge, Fix- und Systemwerte.

Die Einstellungen für die CAN-Knotennummer und die CAN-Busrate bleiben erhalten.

Nach dem Antippen kommt eine Sicherheitsabfrage, ob ein Totalreset durchgeführt werden soll.

Diese Frage wird entweder mit Antippen von (= Ja) oder von (= Nein) beantwortet.

Ein Totalreset kann auch durch Drücken der **Bedienoberfläche** bei der Inbetriebnahme des Reglers **während der Anzeige des TA-Logos** durchgeführt werden. Nach Ablauf der 5 Sekunden für den Start der Kalibrierung erscheint eine Sicherheitsabfrage.

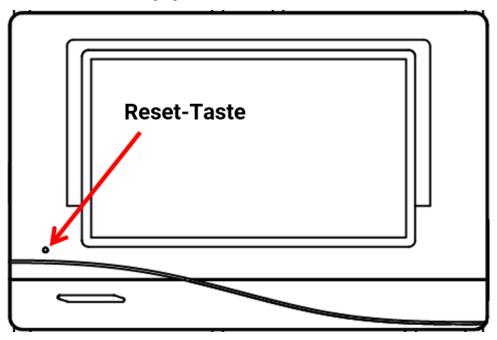
Hier wählt man den gewünschten Vorgang oder kann durch Antippen von 🕍 in das Hauptmenü des Reglers wechseln.

Bei einem Totalreset wird eine Datei **_Backup.dat** mit den alten Funktionsdaten auf der SD-Karte angelegt.

Neustart

Am Ende des Menüs "Datenverwaltung" besteht die Möglichkeit, einen Neustart des Reglers nach einer Sicherheitsabfrage durchzuführen ohne den Regler vom Netz zu trennen.

Reset


Durch **kurzen** Tastendruck (mit einem dünnen Stift) auf die Reset-Taste auf der Vorderseite des Reglers und Loslassen **bevor** der Pfeifton endet startet der Regler neu (= Reset).

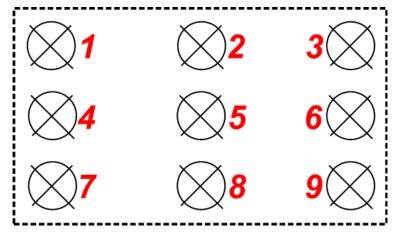
Laden der Firmware des Auslieferungszustands

In Sonderfällen kann es notwendig sein, die **Firmware** des Reglers wieder in den Auslieferungszustand zu setzen. Gleichzeitig wird ein Totalreset durchgeführt.

Durch Tastendruck (mit einem dünnen Stift) auf die Reset-Taste auf der Vorderseite des Reglers während des Einschaltens wird das Laden der Original-Firmware zum Zeitpunkt der Auslieferung gestartet.

Die Taste muss so lange gehalten werden, bis der Pfeifton beendet ist.

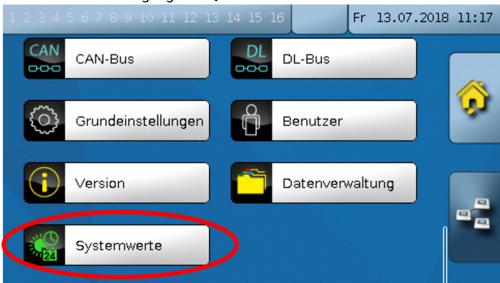
Kalibrierung


Falls die Sensorpunkte des Touchscreens mit der Hintergrundgrafik nicht übereinstimmen und dadurch der Regler nicht mehr einwandfrei bedient werden kann, kann durch "Kalibrierung" der Touchscreen neu eingestellt werden.

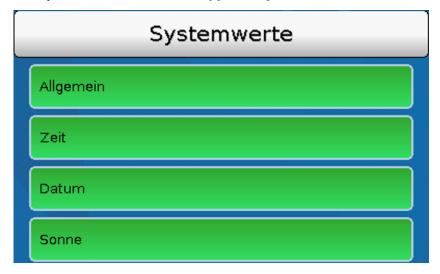
Die Kalibrierung kann durch Drücken der **Bedienoberfläche** nach dem Reglerstart **während der Anzeige des TA-Logos** gestartet werden.

Es erscheint nach dem Reglerstart 5 Sekunden lang folgendes Display (die Sekunden werden heruntergezählt):

Wird der Bildschirm innerhalb dieser Zeit berührt, startet der Kalibriervorgang. Zum Kalibrieren müssen alle 9 Zielpunkte nacheinander einzeln berührt werden.


Anschließend erfolgt die Möglichkeit eines Totalresets oder Weiterschalten in das Hauptmenü des Reglers (siehe nachfolgende Beschreibung).

Change-Log


Jede Änderung im Regler wird in der Datei **CHANGE.LOG** auf der SD-Karte des Reglers mit dem genauen Zeitpunkt protokolliert und kann daher nachverfolgt werden.

Systemwerte

In diesem Menü wird der Status von Systemwerten angezeigt, die für Funktions-Eingangsvariablen und CAN- und DL-Ausgänge als **Quelle** zur Auswahl stehen.

Die Systemwerte sind in 4 Gruppen eingeteilt:

Systemwerte "Allgemein"

Diese Systemwerte erlauben bei entsprechender Programmierung eine Überwachung des Reglersystems.

Reglerstart

- Netzwerkfehler CAN
- Sensorfehler Eingänge
- Netzwerkfehler DL
- Sensorfehler

Netzfrequenz

Reglerstart erzeugt 40 Sekunden nach Einschalten des Gerätes bzw. einem Reset einen 20 Sekunden langen Impuls und dient zur Überwachung von Reglerstarts (z.B. nach Stromausfällen) im Datenlogging. Dazu sollte die Intervallzeit im Datenlogging auf 10 Sekunden gestellt sein.

Sensorfehler und **Netzwerkfehler** sind globale Digitalwerte (Nein/Ja) ohne Bezug auf den Fehlerstatus eines bestimmten Sensors bzw. Netzwerkeingangs.

Hat einer der Sensoren oder Netzwerkeingänge einen Fehler, so ändert sich der zuständige Gruppen-Status von "Nein" auf "Ja".

Systemwerte "Zeit"

- **Sekunde** (der laufenden Uhrzeit)
- Minute (der laufenden Uhrzeit)
- Stunde (der laufenden Uhrzeit)
- Sekundenimpuls
- Minutenimpuls
- Stundenimpuls
- **Sommerzeit** (Digitalwert AUS/EIN)
- Uhrzeit (hh:mm)

Systemwerte "Datum"

- Tag
- Monat
- Jahr (ohne Jahrhundertwert)
- Wochentag (beginnend mit Montag)
- Kalenderwoche
- Tag des Jahres
- Tagesimpuls
- Monatsimpuls
- Jahresimpuls
- Wochenimpuls

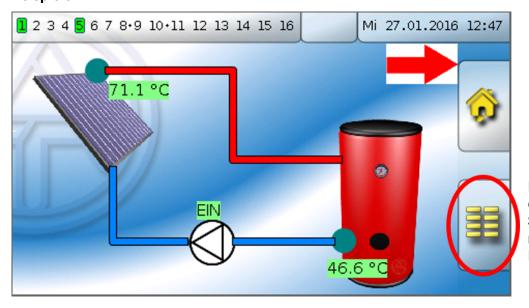
Die "Impuls"-Werte erzeugen einen Impuls pro Zeiteinheit.

Systemwerte "Sonne"

- Sonnenaufgang (Uhrzeit)
- Sonnenuntergang (Uhrzeit)
- Minuten bis Sonnenaufgang (am gleichen Tag, läuft nicht über Mitternacht)
- Minuten seit Sonnenaufgang
- Minuten bis Sonnenuntergang
- Minuten seit Sonnenuntergang (am gleichen Tag, läuft nicht über Mitternacht)
- Sonnenhöhe (siehe Beschattungsfunktion)
- Sonnenrichtung (siehe Beschattungsfunktion)
- Sonnenhöhe > 0° (Digitalwert Ja/Nein)
- Sonnenhöchststand (Uhrzeit)

Funktionsübersicht

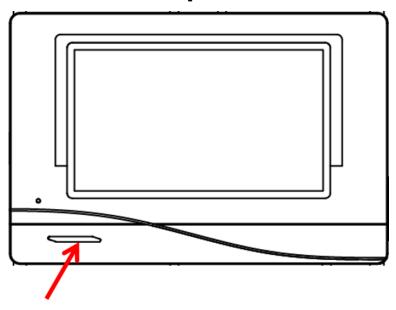
Die Funktionsübersicht ist erst ab Reglerversion V1.04 realisierbar.


Die Programmierung der Funktionsübersicht erfolgt mit Hilfe der Software "**TA-Designer**" und wird in der Hilfedatei dieser Software beschrieben.

Sind mehrere UVR16x2-Regler oder Geräte mit x2-Technologie in der Anlage per CAN-Bus verbunden, so können auch Werte dieser Geräte angezeigt werden.

Durch Antippen der "Home"-Fläche wird die Funktionsübersicht angezeigt. Diese Übersicht ist als einfache Bedienung und Anlagenkontrolle für den Anwender gedacht.

Die Funktionsübersicht kann mit Hilfe von Grafiken oder auch nur als Tabelle dargestellt werden.


Beispiele:

Durch Tippen auf diese Fläche **der Startseite** gelangt man wieder in das Reglermenü.

1 2 3 4 5 6 7 8·9 10·11 12 13 14 15 16	Do 25.02.2016	12:47
Heizkreis 1		
Raumtemperatur	20.5 °C	A
Vorlauftemperatur	39.7 °C	
Außentemperatur	-0.4 °C	
T.Raum Absenk	15.0 °C	
T.Raum Normal	20.0 °C	
Vorhaltezeit	0m	
Betrieb	RAS	1
Heizkreispumpe	EIN	12
õ III	ш	

LED-Kontrolllampe

Die LED-Kontrollampe kann durch 3 Farben verschiedene Zustände anzeigen.

Anzeige beim Reglerstart

Kontrolllampe	Erklärung
Rotes Dauerlicht	Der Regler bootet (= Startroutine nach dem Einschalten, einem Reset oder Update) oder
Oranges Dauerlicht	Hardware-Initialisierung nach dem Booten
Grünes Blinken	Nach der Hardwareinitialisierung wartet der Regler ca. 30 Sekunden um alle für die Funktion notwendigen Informationen zu bekommen (Sensorwerte, Netzwerkeingänge)
Grünes Dauerlicht	Normaler Betrieb des Reglers

Eine aktive **Meldung** kann durch eine geänderte LED-Anzeige angezeigt werden. Die Einstellung dafür erfolgt im **Parametermenü** der Funktion "**Meldung"**.

Technische Daten UVR16x2-R (Relaisversion)

alle Eingänge	Temperatursensoren der Typen PT1000, KTY (2 kΩ/25°C), KTY (1 kΩ/25°C), PT100, PT500, Ni1000, Ni1000TK5000 und Raumsensoren RAS bzw. RASPT, Strahlungssensor GBS01, Thermoelement THEL, Feuchtesensor RFS, Regensensor RES01, Impulse max. 10 Hz (z.B. für Volumenstromgeber VSG), Spannung bis 3,3V DC , Widerstand (1-100kΩ), sowie als Digitaleingang
Eingang 7	zusätzlich Spannung (0-10 V DC)
Eingang 8	zusätzlich Stromschleife (4-20 mA DC), Spannung (0-10 V DC)
Eingang 15, 16	zusätzlich Impulseingang max. 20 Hz , z.B. für Volumenstromgeber VSG oder S0-Signale
Ausgang 1 - 4, 6 - 11	Relaisausgänge, teilweise mit Öffner und Schließer
Ausgang 5	Relaisumschaltkontakt - potentialfrei
Ausgänge 12 - 16	Analogausgänge 0-10V (max. 20mA) oder PWM (10V/1kHz) in jeweils 1000 Stufen (=0,01V bzw. 0,1% pro Stufe) oder Erweiterungsmöglichkeit als Schaltausgänge mit Zusatzrelaismodulen
Ausgang 16	zusätzliche Eigenschaft: stabilisierter Spannungsausgang zur Versorgung von externen Sensoren
max. Schaltleistung	Relaisausgänge: je 230V / 3A
max. Buslast (DL-Bus)	100%
CAN-Bus	Standard-Datenrate 50 kbit/s, einstellbar von 5 bis 500 kbit/s
12V / 24V DC	Versorgung für externe Geräte, in Summe max. 6W
Differenztemperaturen	mit getrennter Ein- und Ausschaltdifferenz
Schwellwerte	mit getrennter Ein- und Ausschaltdifferenz oder mit fixer Hysterese
Temperaturmessbereich	PT100, PT500, PT1000: -200,0°C bis + 850°C mit einer Auflösung von 0,1K
	alle anderen Temperatursensoren: -49,9°C bis +249,9°C mit einer Auflösung von 0,1K
Genauigkeit Temperatur	typ. 0,4K, max. ±1K im Bereich von 0 - 100°C für PT1000-Sensoren
Genauigkeit Widerstands- messung	max. 1,6% bei $100k\Omega$ (Messgröße: Widerstand, Prozessgröße: Widerstand)
Genauigkeit Spannung	typ. 1%, max. 3% vom maximalen Messbereich des Eingangs
Genauigkeit Ausgang 0- 10V	max2% bis +6%
Anschluss	100 - 230V, 50- 60Hz, (Ausgänge A1 – A11 und Gerät gemeinsam abgesichert mit 6,3A flink)
Zuleitung	3 x 1mm² H05VV-F laut EN 60730-1 (Kabel mit Schutzkontaktstecker im Sensor-Grundpaket enthalten)
Leistungsaufnahme	3,0 – 4,5 W, je nach Anzahl aktiver Schaltausgänge
Schutzart	IP40
Schutzklasse	II − Schutzisoliert □
Zulässige Umge- bungstemperatur	+5 bis +45°C

Technische Änderungen sowie Satz- und Druckfehler vorbehalten. Diese Anleitung ist nur für Geräte mit entsprechender Firmware-Version gültig. Unsere Produkte unterliegen ständigem technischen Fortschritt und Weiterentwicklung, wir behalten uns deshalb vor, Änderungen ohne gesonderte Benachrichtigung vorzunehmen.

Technische Daten UVR16x2-D (Triacversion)

alle Eingänge	Temperatursensoren der Typen PT1000, KTY (2 k Ω /25°C), KTY (1 k Ω /25°C), PT100, PT500, Ni1000, Ni1000TK5000 und Raumsensoren RAS bzw. RASPT, Strahlungssensor GBS01, Thermoelement THEL, Feuchtesensor RFS, Regensensor RES01, Impulse max. 10 Hz (z.B. für Volumenstromgeber VSG), Spannung bis 3,3V DC , Widerstand (1-100k Ω), sowie als Digitaleingang
Eingang 7	zusätzlich Spannung (0-10 V DC)
Eingang 8	zusätzlich Stromschleife (4-20 mA DC), Spannung (0-10 V DC)
Eingang 15, 16	zusätzlich Impulseingang max. 20 Hz , z.B. für Volumenstromgeber VSG oder S0-Signale
Ausgang 1, 2, 6, 7	Triac Ausgänge
Ausgang 3, 4 8-11	Relaisausgänge, teilweise mit Öffner und Schließer
Ausgang 5	Relaisumschaltkontakt - potentialfrei
Ausgänge 12-16	Analogausgänge 0-10V (max. 20mA) oder PWM (10V/1kHz) in jeweils 1000 Stufen (=0,01V bzw. 0,1% pro Stufe) oder Erweiterungsmöglichkeit als Schaltausgänge mit Zusatzrelaismodulen
max. Schaltleistung	Triacausgänge 1, 2, 6, 7: je 230V / 1A
	Relaisausgänge: je 230V / 3A
max. Buslast (DL-Bus)	100%
CAN-Bus	Standard-Datenrate 50 kbit/s, einstellbar von 5 bis 500 kbit/s
12V / 24V DC	Versorgung für externe Geräte, in Summe max. 6W
Differenztemperaturen	mit getrennter Ein- und Ausschaltdifferenz
Schwellwerte	mit getrennter Ein- und Ausschaltdifferenz oder mit fixer Hysterese
Temperaturmessbereich	PT100, PT500, PT1000: -200,0°C bis + 850°C mit einer Auflösung von 0,1K
	alle anderen Temperatursensoren: -49,9°C bis +249,9°C mit einer Auflösung von 0,1K
Genauigkeit Temperatur	typ. 0,4K, max. ±1K im Bereich von 0 - 100°C für PT1000-Sensoren
Genauigkeit Widerstands- messung	max. 1,6% bei $100 k\Omega$ (Messgröße: Widerstand, Prozessgröße: Widerstand)
Genauigkeit Spannung	typ. 1%, max. 3% vom maximalen Messbereich des Eingangs
Genauigkeit Ausgang 0- 10V	max2% bis +6%
Anschluss	100 - 230V, 50- 60Hz, (Ausgänge A1 – A11 und Gerät gemeinsam abgesichert mit 6,3A flink)
Zuleitung	3 x 1mm² H05VV-F laut EN 60730-1 (Kabel mit Schutzkontaktstecker im Sensor-Grundpaket enthalten)
Leistungsaufnahme	3,0 – 4,5 W, je nach Anzahl aktiver Schaltausgänge
Schutzart	IP40
Schutzklasse	II − Schutzisoliert □
Zulässige Umge- bungstemperatur	+5 bis +45°C

Technische Änderungen sowie Satz- und Druckfehler vorbehalten. Diese Anleitung ist nur für Geräte mit entsprechender Firmware-Version gültig. Unsere Produkte unterliegen ständigem technischen Fortschritt und Weiterentwicklung, wir behalten uns deshalb vor, Änderungen ohne gesonderte Benachrichtigung vorzunehmen.

Impressum

Diese Bedienungsanleitung ist urheberrechtlich geschützt.

Eine Verwendung außerhalb des Urheberrechts bedarf der Zustimmung der Firma Technische Alternative RT GmbH. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen und elektronische Medien.

Technische Alternative RT GmbH

A-3872 Amaliendorf Langestraße 124

Tel ++43 (0)2862 53635 Fax ++43 (0)2862 53635 7

E-Mail: mail@ta.co.at --- www.ta.co.at --- © 2018